Nuprl Lemma : lattice_properties

[l:Lattice]
  ((∀[a,b:Point(l)].  (a ∧ b ∧ a ∈ Point(l)))
  ∧ (∀[a,b:Point(l)].  (a ∨ b ∨ a ∈ Point(l)))
  ∧ (∀[a,b,c:Point(l)].  (a ∧ b ∧ a ∧ b ∧ c ∈ Point(l)))
  ∧ (∀[a,b,c:Point(l)].  (a ∨ b ∨ a ∨ b ∨ c ∈ Point(l)))
  ∧ (∀[a,b:Point(l)].  (a ∨ a ∧ a ∈ Point(l)))
  ∧ (∀[a,b:Point(l)].  (a ∧ a ∨ a ∈ Point(l))))


Proof




Definitions occuring in Statement :  lattice: Lattice lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) uall: [x:A]. B[x] and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice: Lattice and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] prop: lattice-axioms: lattice-axioms(l) cand: c∧ B implies:  Q sq_stable: SqStable(P) squash: T
Lemmas referenced :  sq_stable__equal sq_stable__uall sq_stable__and squash_wf lattice-join_wf lattice-meet_wf equal_wf uall_wf lattice_wf lattice-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename sqequalRule productElimination independent_pairEquality isect_memberEquality isectElimination hypothesisEquality axiomEquality hypothesis lemma_by_obid lambdaEquality productEquality because_Cache independent_pairFormation independent_functionElimination dependent_functionElimination lambdaFormation imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[l:Lattice]
    ((\mforall{}[a,b:Point(l)].    (a  \mwedge{}  b  =  b  \mwedge{}  a))
    \mwedge{}  (\mforall{}[a,b:Point(l)].    (a  \mvee{}  b  =  b  \mvee{}  a))
    \mwedge{}  (\mforall{}[a,b,c:Point(l)].    (a  \mwedge{}  b  \mwedge{}  c  =  a  \mwedge{}  b  \mwedge{}  c))
    \mwedge{}  (\mforall{}[a,b,c:Point(l)].    (a  \mvee{}  b  \mvee{}  c  =  a  \mvee{}  b  \mvee{}  c))
    \mwedge{}  (\mforall{}[a,b:Point(l)].    (a  \mvee{}  a  \mwedge{}  b  =  a))
    \mwedge{}  (\mforall{}[a,b:Point(l)].    (a  \mwedge{}  a  \mvee{}  b  =  a)))



Date html generated: 2020_05_20-AM-08_23_43
Last ObjectModification: 2016_01_17-PM-00_54_32

Theory : lattices


Home Index