Nuprl Lemma : lattice_properties
∀[l:Lattice]
  ((∀[a,b:Point(l)].  (a ∧ b = b ∧ a ∈ Point(l)))
  ∧ (∀[a,b:Point(l)].  (a ∨ b = b ∨ a ∈ Point(l)))
  ∧ (∀[a,b,c:Point(l)].  (a ∧ b ∧ c = a ∧ b ∧ c ∈ Point(l)))
  ∧ (∀[a,b,c:Point(l)].  (a ∨ b ∨ c = a ∨ b ∨ c ∈ Point(l)))
  ∧ (∀[a,b:Point(l)].  (a ∨ a ∧ b = a ∈ Point(l)))
  ∧ (∀[a,b:Point(l)].  (a ∧ a ∨ b = a ∈ Point(l))))
Proof
Definitions occuring in Statement : 
lattice: Lattice
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lattice: Lattice
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
lattice-axioms: lattice-axioms(l)
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
sq_stable__equal, 
sq_stable__uall, 
sq_stable__and, 
squash_wf, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
uall_wf, 
lattice_wf, 
lattice-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
lemma_by_obid, 
lambdaEquality, 
productEquality, 
because_Cache, 
independent_pairFormation, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[l:Lattice]
    ((\mforall{}[a,b:Point(l)].    (a  \mwedge{}  b  =  b  \mwedge{}  a))
    \mwedge{}  (\mforall{}[a,b:Point(l)].    (a  \mvee{}  b  =  b  \mvee{}  a))
    \mwedge{}  (\mforall{}[a,b,c:Point(l)].    (a  \mwedge{}  b  \mwedge{}  c  =  a  \mwedge{}  b  \mwedge{}  c))
    \mwedge{}  (\mforall{}[a,b,c:Point(l)].    (a  \mvee{}  b  \mvee{}  c  =  a  \mvee{}  b  \mvee{}  c))
    \mwedge{}  (\mforall{}[a,b:Point(l)].    (a  \mvee{}  a  \mwedge{}  b  =  a))
    \mwedge{}  (\mforall{}[a,b:Point(l)].    (a  \mwedge{}  a  \mvee{}  b  =  a)))
Date html generated:
2020_05_20-AM-08_23_43
Last ObjectModification:
2016_01_17-PM-00_54_32
Theory : lattices
Home
Index