Nuprl Lemma : distributive-lattice-dual-distrib

[L:DistributiveLattice]. ∀[a,b,c:Point(L)].  (a ∨ b ∧ a ∨ b ∧ a ∨ c ∈ Point(L))


Proof




Definitions occuring in Statement :  distributive-lattice: DistributiveLattice lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T distributive-lattice: DistributiveLattice and: P ∧ Q lattice-axioms: lattice-axioms(l) squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  lattice-point_wf distributive-lattice_wf equal_wf squash_wf true_wf lattice-join_wf lattice-meet_wf iff_weakening_equal lattice-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename productElimination hypothesis extract_by_obid isectElimination hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[L:DistributiveLattice].  \mforall{}[a,b,c:Point(L)].    (a  \mvee{}  b  \mwedge{}  c  =  a  \mvee{}  b  \mwedge{}  a  \mvee{}  c)



Date html generated: 2020_05_20-AM-08_25_46
Last ObjectModification: 2017_07_28-AM-09_12_56

Theory : lattices


Home Index