Nuprl Lemma : csm-equal

[A,B:j⊢]. ∀[f:A j⟶ B]. ∀[g:I:fset(ℕ) ⟶ A(I) ⟶ B(I)].  g ∈ j⟶ supposing g ∈ (I:fset(ℕ) ⟶ A(I) ⟶ B(I))


Proof




Definitions occuring in Statement :  cube_set_map: A ⟶ B I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I)
Lemmas referenced :  pscm-equal cube-cat_wf cat_ob_pair_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[A,B:j\mvdash{}].  \mforall{}[f:A  j{}\mrightarrow{}  B].  \mforall{}[g:I:fset(\mBbbN{})  {}\mrightarrow{}  A(I)  {}\mrightarrow{}  B(I)].    f  =  g  supposing  f  =  g



Date html generated: 2020_05_20-PM-01_41_07
Last ObjectModification: 2020_04_03-PM-03_33_35

Theory : cubical!type!theory


Home Index