Nuprl Lemma : pscm-equal

[C:SmallCategory]. ∀[A,B:ps_context{j:l}(C)]. ∀[f:psc_map{j:l}(C; A; B)]. ∀[g:I:cat-ob(C) ⟶ A(I) ⟶ B(I)].
  g ∈ psc_map{j:l}(C; A; B) supposing g ∈ (I:cat-ob(C) ⟶ A(I) ⟶ B(I))


Proof




Definitions occuring in Statement :  psc_map: A ⟶ B I_set: A(I) ps_context: __⊢ uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] equal: t ∈ T cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a psc_map: A ⟶ B member: t ∈ T subtype_rel: A ⊆B ps_context: __⊢ so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] cat-arrow: cat-arrow(C) pi1: fst(t) pi2: snd(t) type-cat: TypeCat I_set: A(I) guard: {T} implies:  Q nat-trans: nat-trans(C;D;F;G) prop:
Lemmas referenced :  nat-trans-equal op-cat_wf type-cat_wf small-category-cumulativity-2 subtype_rel_dep_function cat-ob_wf I_set_wf cat-arrow_wf functor-ob_wf subtype_rel-equal cat_ob_op_lemma subtype_rel_self equal_functionality_wrt_subtype_rel2 subtype_rel_set equal_wf cat-comp_wf functor-arrow_wf psc_map_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule cumulativity lambdaEquality_alt functionEquality universeIsType independent_isectElimination dependent_functionElimination lambdaFormation_alt equalityTransitivity equalitySymmetry independent_functionElimination equalityIstype functionIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:ps\_context\{j:l\}(C)].  \mforall{}[f:psc\_map\{j:l\}(C;  A;  B)].  \mforall{}[g:I:cat-ob(C)
                                                                                                                                                              {}\mrightarrow{}  A(I)
                                                                                                                                                              {}\mrightarrow{}  B(I)].
    f  =  g  supposing  f  =  g



Date html generated: 2020_05_20-PM-01_23_57
Last ObjectModification: 2020_04_01-AM-09_57_00

Theory : presheaf!models!of!type!theory


Home Index