Nuprl Lemma : nat-trans-equal
∀[C,D:SmallCategory]. ∀[F,G:Functor(C;D)]. ∀[A:nat-trans(C;D;F;G)]. ∀[B:A:cat-ob(C) ⟶ (cat-arrow(D) (F A) (G A))].
  A = B ∈ nat-trans(C;D;F;G) supposing A = B ∈ (A:cat-ob(C) ⟶ (cat-arrow(D) (F A) (G A)))
Proof
Definitions occuring in Statement : 
nat-trans: nat-trans(C;D;F;G)
, 
functor-ob: ob(F)
, 
cat-functor: Functor(C1;C2)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
nat-trans: nat-trans(C;D;F;G)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
nat-trans_wf, 
functor-arrow_wf, 
cat-comp_wf, 
functor-ob_wf, 
equal_wf, 
cat-arrow_wf, 
cat-ob_wf, 
all_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
isect_memberEquality, 
functionEquality, 
because_Cache, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
lemma_by_obid, 
hypothesis, 
dependent_set_memberEquality, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F,G:Functor(C;D)].  \mforall{}[A:nat-trans(C;D;F;G)].
\mforall{}[B:A:cat-ob(C)  {}\mrightarrow{}  (cat-arrow(D)  (F  A)  (G  A))].
    A  =  B  supposing  A  =  B
Date html generated:
2020_05_20-AM-07_51_24
Last ObjectModification:
2015_12_28-PM-02_25_09
Theory : small!categories
Home
Index