Nuprl Lemma : nat-trans_wf

[C,D:SmallCategory]. ∀[F,G:Functor(C;D)].  (nat-trans(C;D;F;G) ∈ Type)


Proof




Definitions occuring in Statement :  nat-trans: nat-trans(C;D;F;G) cat-functor: Functor(C1;C2) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  prop: all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] nat-trans: nat-trans(C;D;F;G) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  small-category_wf cat-functor_wf functor-arrow_wf cat-comp_wf equal_wf all_wf functor-ob_wf cat-arrow_wf cat-ob_wf
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality lambdaEquality because_Cache applyEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution lemma_by_obid functionEquality setEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F,G:Functor(C;D)].    (nat-trans(C;D;F;G)  \mmember{}  Type)



Date html generated: 2020_05_20-AM-07_51_15
Last ObjectModification: 2015_12_28-PM-02_24_13

Theory : small!categories


Home Index