Nuprl Lemma : psc_map_wf
∀[C:SmallCategory]. ∀[A,B:ps_context{j:l}(C)].  (psc_map{j:l}(C; A; B) ∈ 𝕌{[i | j'']})
Proof
Definitions occuring in Statement : 
psc_map: A ⟶ B
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
ps_context: __⊢
, 
psc_map: A ⟶ B
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
nat-trans_wf, 
op-cat_wf, 
type-cat_wf, 
small-category-cumulativity-2, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalHypSubstitution, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
universeIsType
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:ps\_context\{j:l\}(C)].    (psc\_map\{j:l\}(C;  A;  B)  \mmember{}  \mBbbU{}\{[i  |  j'']\})
Date html generated:
2020_05_20-PM-01_23_49
Last ObjectModification:
2020_03_31-PM-07_38_45
Theory : presheaf!models!of!type!theory
Home
Index