Nuprl Lemma : psc_map_wf

[C:SmallCategory]. ∀[A,B:ps_context{j:l}(C)].  (psc_map{j:l}(C; A; B) ∈ 𝕌{[i j'']})


Proof




Definitions occuring in Statement :  psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T universe: Type small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] ps_context: __⊢ psc_map: A ⟶ B member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  nat-trans_wf op-cat_wf type-cat_wf small-category-cumulativity-2 ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalHypSubstitution cut thin instantiate introduction extract_by_obid isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule universeIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:ps\_context\{j:l\}(C)].    (psc\_map\{j:l\}(C;  A;  B)  \mmember{}  \mBbbU{}\{[i  |  j'']\})



Date html generated: 2020_05_20-PM-01_23_49
Last ObjectModification: 2020_03_31-PM-07_38_45

Theory : presheaf!models!of!type!theory


Home Index