Nuprl Lemma : dma-neg-eq-1-implies-meet-eq-0

[K:fset(ℕ)]. ∀[a2,x1:Point(dM(K))].  ((¬(a2) 1 ∈ Point(dM(K)))  (0 a2 ∧ x1 ∈ Point(dM(K))))


Proof




Definitions occuring in Statement :  dM0: 0 dM: dM(I) names-deq: NamesDeq names: names(I) dm-neg: ¬(x) lattice-1: 1 lattice-meet: a ∧ b lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q and: P ∧ Q squash: T prop: subtype_rel: A ⊆B true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] so_apply: x[s] lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice rev_implies:  Q dM0: 0 lattice-0: 0 empty-fset: {} nil: [] it: dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-1: 1 fset-singleton: {x} cons: [a b] fset-union: x ⋃ y l-union: as ⋃ bs insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L lattice-join: a ∨ b opposite-lattice: opposite-lattice(L) so_lambda: λ2y.t[x; y] lattice-meet: a ∧ b fset-ac-glb: fset-ac-glb(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) lattice-fset-meet: /\(s)
Lemmas referenced :  dM-neg-properties equal_wf squash_wf true_wf istype-universe lattice-meet_wf dM_wf subtype_rel_self iff_weakening_equal dm-neg_wf names_wf names-deq_wf subtype_rel-equal lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-join_wf DeMorgan-algebra-axioms_wf free-DeMorgan-lattice_wf lattice-1_wf fset_wf nat_wf dM0_wf deq_wf bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype DeMorgan-algebra_wf bdd-distributive-lattice_wf bdd-lattice_wf lattice-join-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination applyEquality lambdaEquality_alt imageElimination equalityTransitivity hypothesis equalitySymmetry universeIsType inhabitedIsType instantiate universeEquality because_Cache sqequalRule natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination equalityIsType1 productEquality cumulativity dependent_functionElimination axiomEquality functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[K:fset(\mBbbN{})].  \mforall{}[a2,x1:Point(dM(K))].    ((\mneg{}(a2)  =  1)  {}\mRightarrow{}  (0  =  a2  \mwedge{}  x1))



Date html generated: 2019_11_04-PM-05_30_39
Last ObjectModification: 2018_11_08-AM-10_18_14

Theory : cubical!type!theory


Home Index