Nuprl Lemma : csm-ap-term_wf
∀[Delta,Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[s:Delta j⟶ Gamma]. ∀[t:{Gamma ⊢ _:A}].  ((t)s ∈ {Delta ⊢ _:(A)s})
Proof
Definitions occuring in Statement : 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cube_set_map: A ⟶ B
, 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
csm-ap-term: (t)s
, 
pscm-ap-term: (t)s
Lemmas referenced : 
pscm-ap-term_wf, 
cube-cat_wf, 
cubical-type-sq-presheaf-type, 
cubical-term-sq-presheaf-term
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop
Latex:
\mforall{}[Delta,Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[s:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[t:\{Gamma  \mvdash{}  \_:A\}].
    ((t)s  \mmember{}  \{Delta  \mvdash{}  \_:(A)s\})
Date html generated:
2020_05_20-PM-01_53_35
Last ObjectModification:
2020_04_03-PM-08_28_22
Theory : cubical!type!theory
Home
Index