Nuprl Lemma : pscm-ap-term_wf

[C:SmallCategory]. ∀[Delta,Gamma:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢ _}]. ∀[s:psc_map{j:l}(C; Delta; Gamma)].
[t:{Gamma ⊢ _:A}].
  ((t)s ∈ {Delta ⊢ _:(A)s})


Proof




Definitions occuring in Statement :  pscm-ap-term: (t)s presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-type: {X ⊢ _} presheaf-term: {X ⊢ _:A} all: x:A. B[x] pscm-ap-term: (t)s pscm-ap-type: (AF)s and: P ∧ Q squash: T prop: subtype_rel: A ⊆B uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  presheaf-term_wf presheaf_type_at_pair_lemma presheaf_type_ap_morph_pair_lemma pscm-ap_wf I_set_wf cat-ob_wf equal_wf squash_wf true_wf istype-universe psc-restriction_wf subtype_rel-equal ps_context_cumulativity2 small-category-cumulativity-2 pscm-ap-restriction subtype_rel_self iff_weakening_equal cat-arrow_wf psc_map_wf presheaf-type_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename productElimination sqequalRule dependent_functionElimination Error :memTop,  hypothesis dependent_set_memberEquality_alt lambdaEquality_alt applyEquality universeIsType lambdaFormation_alt imageElimination equalityTransitivity equalitySymmetry instantiate universeEquality because_Cache independent_isectElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination inhabitedIsType functionIsType equalityIstype

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Delta,Gamma:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[s:psc\_map\{j:l\}(C;
                                                                                                                                                                                    Delta;
                                                                                                                                                                                    Gamma)].
\mforall{}[t:\{Gamma  \mvdash{}  \_:A\}].
    ((t)s  \mmember{}  \{Delta  \mvdash{}  \_:(A)s\})



Date html generated: 2020_05_20-PM-01_26_54
Last ObjectModification: 2020_04_01-PM-00_17_24

Theory : presheaf!models!of!type!theory


Home Index