Nuprl Lemma : pscm-ap_wf

[C:SmallCategory]. ∀[X,Y:ps_context{j:l}(C)]. ∀[s:psc_map{j:l}(C; X; Y)]. ∀[I:cat-ob(C)]. ∀[x:X(I)].  ((s)x ∈ Y(I))


Proof




Definitions occuring in Statement :  pscm-ap: (s)x psc_map: A ⟶ B I_set: A(I) ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pscm-ap: (s)x ps_context: __⊢ cat-functor: Functor(C1;C2) all: x:A. B[x] psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) small-category: SmallCategory spreadn: spread4 and: P ∧ Q functor-ob: ob(F) type-cat: TypeCat cat-arrow: cat-arrow(C) op-cat: op-cat(C) cat-ob: cat-ob(C) pi2: snd(t) pi1: fst(t) subtype_rel: A ⊆B
Lemmas referenced :  I_set_pair_redex_lemma cat_ob_pair_lemma I_set_wf cat-ob_wf psc_map_wf small-category-cumulativity-2 ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination extract_by_obid dependent_functionElimination Error :memTop,  hypothesis sqequalRule applyEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry universeIsType isectElimination isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate because_Cache

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Y:ps\_context\{j:l\}(C)].  \mforall{}[s:psc\_map\{j:l\}(C;  X;  Y)].  \mforall{}[I:cat-ob(C)].
\mforall{}[x:X(I)].
    ((s)x  \mmember{}  Y(I))



Date html generated: 2020_05_20-PM-01_24_03
Last ObjectModification: 2020_04_01-AM-10_46_57

Theory : presheaf!models!of!type!theory


Home Index