Nuprl Lemma : pscm-ap_wf
∀[C:SmallCategory]. ∀[X,Y:ps_context{j:l}(C)]. ∀[s:psc_map{j:l}(C; X; Y)]. ∀[I:cat-ob(C)]. ∀[x:X(I)].  ((s)x ∈ Y(I))
Proof
Definitions occuring in Statement : 
pscm-ap: (s)x
, 
psc_map: A ⟶ B
, 
I_set: A(I)
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pscm-ap: (s)x
, 
ps_context: __⊢
, 
cat-functor: Functor(C1;C2)
, 
all: ∀x:A. B[x]
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
small-category: SmallCategory
, 
spreadn: spread4, 
and: P ∧ Q
, 
functor-ob: ob(F)
, 
type-cat: TypeCat
, 
cat-arrow: cat-arrow(C)
, 
op-cat: op-cat(C)
, 
cat-ob: cat-ob(C)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
I_set_pair_redex_lemma, 
cat_ob_pair_lemma, 
I_set_wf, 
cat-ob_wf, 
psc_map_wf, 
small-category-cumulativity-2, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isectElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
because_Cache
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Y:ps\_context\{j:l\}(C)].  \mforall{}[s:psc\_map\{j:l\}(C;  X;  Y)].  \mforall{}[I:cat-ob(C)].
\mforall{}[x:X(I)].
    ((s)x  \mmember{}  Y(I))
Date html generated:
2020_05_20-PM-01_24_03
Last ObjectModification:
2020_04_01-AM-10_46_57
Theory : presheaf!models!of!type!theory
Home
Index