Nuprl Lemma : pscm-ap-restriction
∀C:SmallCategory. ∀X,Y:ps_context{j:l}(C). ∀s:psc_map{j:l}(C; X; Y). ∀I,J:cat-ob(C). ∀f:cat-arrow(C) J I. ∀a:X(I).
  (f((s)a) = (s)f(a) ∈ Y(J))
Proof
Definitions occuring in Statement : 
pscm-ap: (s)x
, 
psc_map: A ⟶ B
, 
psc-restriction: f(s)
, 
I_set: A(I)
, 
ps_context: __⊢
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
ps_context: __⊢
, 
cat-functor: Functor(C1;C2)
, 
and: P ∧ Q
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
small-category: SmallCategory
, 
spreadn: spread4, 
I_set: A(I)
, 
member: t ∈ T
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
cat-ob: cat-ob(C)
, 
functor-arrow: arrow(F)
, 
functor-ob: ob(F)
, 
type-cat: TypeCat
, 
cat-comp: cat-comp(C)
, 
op-cat: op-cat(C)
, 
compose: f o g
, 
psc-restriction: f(s)
, 
pscm-ap: (s)x
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
ob_pair_lemma, 
cat_id_tuple_lemma, 
I_set_wf, 
cat-arrow_wf, 
cat-ob_wf, 
psc_map_wf, 
small-category-cumulativity-2, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
hypothesisEquality, 
applyLambdaEquality, 
applyEquality, 
universeIsType, 
isectElimination, 
inhabitedIsType, 
instantiate, 
because_Cache
Latex:
\mforall{}C:SmallCategory.  \mforall{}X,Y:ps\_context\{j:l\}(C).  \mforall{}s:psc\_map\{j:l\}(C;  X;  Y).  \mforall{}I,J:cat-ob(C).
\mforall{}f:cat-arrow(C)  J  I.  \mforall{}a:X(I).
    (f((s)a)  =  (s)f(a))
Date html generated:
2020_05_20-PM-01_24_38
Last ObjectModification:
2020_04_01-AM-11_00_40
Theory : presheaf!models!of!type!theory
Home
Index