Nuprl Lemma : pscm-ap-restriction

C:SmallCategory. ∀X,Y:ps_context{j:l}(C). ∀s:psc_map{j:l}(C; X; Y). ∀I,J:cat-ob(C). ∀f:cat-arrow(C) I. ∀a:X(I).
  (f((s)a) (s)f(a) ∈ Y(J))


Proof




Definitions occuring in Statement :  pscm-ap: (s)x psc_map: A ⟶ B psc-restriction: f(s) I_set: A(I) ps_context: __⊢ all: x:A. B[x] apply: a equal: t ∈ T cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  all: x:A. B[x] ps_context: __⊢ cat-functor: Functor(C1;C2) and: P ∧ Q psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) small-category: SmallCategory spreadn: spread4 I_set: A(I) member: t ∈ T cat-arrow: cat-arrow(C) pi2: snd(t) pi1: fst(t) cat-ob: cat-ob(C) functor-arrow: arrow(F) functor-ob: ob(F) type-cat: TypeCat cat-comp: cat-comp(C) op-cat: op-cat(C) compose: g psc-restriction: f(s) pscm-ap: (s)x uall: [x:A]. B[x] subtype_rel: A ⊆B
Lemmas referenced :  ob_pair_lemma cat_id_tuple_lemma I_set_wf cat-arrow_wf cat-ob_wf psc_map_wf small-category-cumulativity-2 ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule introduction extract_by_obid dependent_functionElimination Error :memTop,  hypothesis hypothesisEquality applyLambdaEquality applyEquality universeIsType isectElimination inhabitedIsType instantiate because_Cache

Latex:
\mforall{}C:SmallCategory.  \mforall{}X,Y:ps\_context\{j:l\}(C).  \mforall{}s:psc\_map\{j:l\}(C;  X;  Y).  \mforall{}I,J:cat-ob(C).
\mforall{}f:cat-arrow(C)  J  I.  \mforall{}a:X(I).
    (f((s)a)  =  (s)f(a))



Date html generated: 2020_05_20-PM-01_24_38
Last ObjectModification: 2020_04_01-AM-11_00_40

Theory : presheaf!models!of!type!theory


Home Index