Nuprl Lemma : presheaf-term_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}].  ({X ⊢ _:A} ∈ 𝕌{[i j']})


Proof




Definitions occuring in Statement :  presheaf-term: {X ⊢ _:A} presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T universe: Type small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-type: {X ⊢ _} presheaf-term: {X ⊢ _:A} all: x:A. B[x] subtype_rel: A ⊆B and: P ∧ Q prop:
Lemmas referenced :  presheaf_type_at_pair_lemma presheaf_type_ap_morph_pair_lemma cat-ob_wf I_set_wf cat-arrow_wf equal_wf psc-restriction_wf small-category-cumulativity-2 ps_context_cumulativity2 presheaf-type_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule extract_by_obid dependent_functionElimination Error :memTop,  hypothesis setEquality functionEquality cumulativity isectElimination hypothesisEquality applyEquality instantiate because_Cache axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].    (\{X  \mvdash{}  \_:A\}  \mmember{}  \mBbbU{}\{[i  |  j']\})



Date html generated: 2020_05_20-PM-01_26_32
Last ObjectModification: 2020_03_31-PM-02_39_26

Theory : presheaf!models!of!type!theory


Home Index