Nuprl Lemma : presheaf-term_wf
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}].  ({X ⊢ _:A} ∈ 𝕌{[i | j']})
Proof
Definitions occuring in Statement : 
presheaf-term: {X ⊢ _:A}
, 
presheaf-type: {X ⊢ _}
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
presheaf-type: {X ⊢ _}
, 
presheaf-term: {X ⊢ _:A}
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
presheaf_type_at_pair_lemma, 
presheaf_type_ap_morph_pair_lemma, 
cat-ob_wf, 
I_set_wf, 
cat-arrow_wf, 
equal_wf, 
psc-restriction_wf, 
small-category-cumulativity-2, 
ps_context_cumulativity2, 
presheaf-type_wf, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
setEquality, 
functionEquality, 
cumulativity, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].    (\{X  \mvdash{}  \_:A\}  \mmember{}  \mBbbU{}\{[i  |  j']\})
Date html generated:
2020_05_20-PM-01_26_32
Last ObjectModification:
2020_03_31-PM-02_39_26
Theory : presheaf!models!of!type!theory
Home
Index