Nuprl Lemma : istype-cubical-type-at

[X:j⊢]. ∀[I:fset(ℕ)]. ∀[a:X(I)]. ∀[A:{X ⊢ _}].  istype(A(a))


Proof




Definitions occuring in Statement :  cubical-type-at: A(a) cubical-type: {X ⊢ _} I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: istype: istype(T) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  cubical-type-at_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-type_wf I_cube_wf fset_wf nat_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].  \mforall{}[A:\{X  \mvdash{}  \_\}].    istype(A(a))



Date html generated: 2020_05_20-PM-01_47_48
Last ObjectModification: 2020_04_03-PM-08_23_58

Theory : cubical!type!theory


Home Index