Nuprl Lemma : istype-cubical-type-at
∀[X:j⊢]. ∀[I:fset(ℕ)]. ∀[a:X(I)]. ∀[A:{X ⊢ _}].  istype(A(a))
Proof
Definitions occuring in Statement : 
cubical-type-at: A(a)
, 
cubical-type: {X ⊢ _}
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
nat: ℕ
, 
istype: istype(T)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
cubical-type-at_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-type_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
universeIsType, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].  \mforall{}[A:\{X  \mvdash{}  \_\}].    istype(A(a))
Date html generated:
2020_05_20-PM-01_47_48
Last ObjectModification:
2020_04_03-PM-08_23_58
Theory : cubical!type!theory
Home
Index