Nuprl Lemma : cubical-type-at_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[I:fset(ℕ)]. ∀[a:X(I)].  (A(a) ∈ Type)


Proof




Definitions occuring in Statement :  cubical-type-at: A(a) cubical-type: {X ⊢ _} I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a)
Lemmas referenced :  presheaf-type-at_wf cube-cat_wf cubical-type-sq-presheaf-type cat_ob_pair_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop,  dependent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].    (A(a)  \mmember{}  Type)



Date html generated: 2020_05_20-PM-01_47_40
Last ObjectModification: 2020_04_03-PM-08_24_10

Theory : cubical!type!theory


Home Index