Nuprl Lemma : presheaf-type-at_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[I:cat-ob(C)]. ∀[a:X(I)].  (A(a) ∈ Type)


Proof




Definitions occuring in Statement :  presheaf-type-at: A(a) presheaf-type: {X ⊢ _} I_set: A(I) ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T universe: Type cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-type: {X ⊢ _} presheaf-type-at: A(a) pi1: fst(t) subtype_rel: A ⊆B
Lemmas referenced :  I_set_wf cat-ob_wf presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule applyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType extract_by_obid isectElimination isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I:cat-ob(C)].  \mforall{}[a:X(I)].    (A(a)  \mmember{}  Type)



Date html generated: 2020_05_20-PM-01_25_52
Last ObjectModification: 2020_04_01-AM-11_00_53

Theory : presheaf!models!of!type!theory


Home Index