Step
*
of Lemma
assert-ctt-is-fibrant
No Annotations
∀[t:CttTerm]
  ∀X:?CubicalContext. [[X;t]] ⊆r Provisional''''(cttType(context-set(X))) supposing context-ok(X) 
  supposing ↑ctt-is-fibrant(t)
BY
{ (RepeatFor 4 (Intro)
   THEN (D 0 THENA Auto)
   THEN Unfold `ctt_meaning` -1
   THEN (GenConcl ⌜x = y ∈ Provisional''''(ctt-meaning-type{i:l}(context-set(X);t))⌝⋅ THENA Auto)
   THEN ThinVar `x'
   THEN DoSubsume
   THEN Try (Trivial)
   THEN (BLemma `provisional-subtype` THENW Auto)
   THEN Unfold `ctt-meaning-type` 0
   THEN (InstLemma `isvarterm_wf` [⌜parm{i'}⌝;⌜CttOp⌝;⌜t⌝]⋅ THENA Auto)
   THEN Unfold `ctt-is-fibrant` 2
   THEN (RW assert_pushdownC 2 THENA Auto)
   THEN D 2
   THEN HypSubst' 3 0
   THEN Reduce 0
   THEN Auto) }
Latex:
Latex:
No  Annotations
\mforall{}[t:CttTerm]
    \mforall{}X:?CubicalContext.  [[X;t]]  \msubseteq{}r  Provisional''''(cttType(context-set(X)))  supposing  context-ok(X) 
    supposing  \muparrow{}ctt-is-fibrant(t)
By
Latex:
(RepeatFor  4  (Intro)
  THEN  (D  0  THENA  Auto)
  THEN  Unfold  `ctt\_meaning`  -1
  THEN  (GenConcl  \mkleeneopen{}x  =  y\mkleeneclose{}\mcdot{}  THENA  Auto)
  THEN  ThinVar  `x'
  THEN  DoSubsume
  THEN  Try  (Trivial)
  THEN  (BLemma  `provisional-subtype`  THENW  Auto)
  THEN  Unfold  `ctt-meaning-type`  0
  THEN  (InstLemma  `isvarterm\_wf`  [\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}CttOp\mkleeneclose{};\mkleeneopen{}t\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  Unfold  `ctt-is-fibrant`  2
  THEN  (RW  assert\_pushdownC  2  THENA  Auto)
  THEN  D  2
  THEN  HypSubst'  3  0
  THEN  Reduce  0
  THEN  Auto)
Home
Index