Nuprl Lemma : assert-ctt-is-fibrant

[t:CttTerm]
  ∀X:?CubicalContext. [[X;t]] ⊆Provisional''''(cttType(context-set(X))) supposing context-ok(X) 
  supposing ↑ctt-is-fibrant(t)


Proof




Definitions occuring in Statement :  ctt-is-fibrant: ctt-is-fibrant(t) ctt_meaning: [[ctxt;t]] ctt-term: CttTerm context-set: context-set(ctxt) context-ok: context-ok(ctxt) cubical-context: ?CubicalContext ctt-type-meaning: cttType(X) assert: b uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] provisional-type: Provisional(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B member: t ∈ T ctt_meaning: [[ctxt;t]] prop: implies:  Q ctt-meaning-type: ctt-meaning-type{i:l}(X;t) ctt-term: CttTerm wfterm: wfterm(opr;sort;arity) ctt-is-fibrant: ctt-is-fibrant(t) or: P ∨ Q sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) and: P ∧ Q exists: x:A. B[x] bnot: ¬bb ifthenelse: if then else fi  btrue: tt assert: b bfalse: ff false: False band: p ∧b q not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] eq_atom: =a y bool: 𝔹 unit: Unit it: iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  uimplies_subtype provisional-type_wf ctt-meaning-type_wf context-set_wf context-ok_wf provisional-subtype ctt-type-meaning_wf isvarterm_wf ctt-op_wf ctt_meaning_wf cubical-context_wf istype-assert ctt-is-fibrant_wf ctt-term_wf assert_wf bnot_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert band_wf btrue_wf bool_cases_sqequal eqff_to_assert assert-bnot eq_atom_wf ctt-op-sort_wf term-opr_wf bfalse_wf assert_elim btrue_neq_bfalse not_wf equal-wf-base set_subtype_base l_member_wf cons_wf nil_wf istype-atom atom_subtype_base assert_of_bnot istype-void subtype_rel-equal ifthenelse_wf ctt-term-meaning_wf iff_transitivity iff_weakening_uiff assert_of_band assert_of_eq_atom
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt lambdaEquality_alt sqequalHypSubstitution cut hypothesisEquality applyEquality thin instantiate introduction extract_by_obid isectElimination independent_isectElimination hypothesis because_Cache cumulativity universeIsType sqequalRule inhabitedIsType setElimination rename equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination unionElimination productElimination dependent_pairFormation_alt promote_hyp voidElimination tokenEquality productEquality dependent_set_memberEquality_alt independent_pairFormation productIsType applyLambdaEquality closedConclusion atomEquality baseClosed isect_memberEquality_alt functionIsType sqequalBase universeEquality equalityElimination

Latex:
\mforall{}[t:CttTerm]
    \mforall{}X:?CubicalContext.  [[X;t]]  \msubseteq{}r  Provisional''''(cttType(context-set(X)))  supposing  context-ok(X) 
    supposing  \muparrow{}ctt-is-fibrant(t)



Date html generated: 2020_05_21-AM-10_36_16
Last ObjectModification: 2020_05_18-AM-00_17_54

Theory : cubical!type!theory


Home Index