Nuprl Lemma : provisional-type_wf

[T:𝕌']. (Provisional(T) ∈ 𝕌')


Proof




Definitions occuring in Statement :  provisional-type: Provisional(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T provisional-type: Provisional(T) prop: uimplies: supposing a subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] and: P ∧ Q pi1: fst(t) implies:  Q pi2: snd(t) iff: ⇐⇒ Q so_apply: x[s1;s2]
Lemmas referenced :  quotient_wf squash_wf iff_wf equal_wf uimplies_subtype provisional-equiv istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination productEquality universeEquality isectEquality hypothesisEquality hypothesis applyEquality lambdaEquality_alt cumulativity inhabitedIsType equalityTransitivity equalitySymmetry productElimination because_Cache functionEquality independent_isectElimination universeIsType independent_functionElimination productIsType isectIsType axiomEquality

Latex:
\mforall{}[T:\mBbbU{}'].  (Provisional(T)  \mmember{}  \mBbbU{}')



Date html generated: 2020_05_20-AM-08_00_39
Last ObjectModification: 2020_05_17-PM-06_48_10

Theory : monads


Home Index