Nuprl Lemma : provisional-equiv
∀[T:𝕌']. EquivRel(ok:ℙ × T supposing ↓ok;x,y.(↓fst(x) 
⇐⇒ ↓fst(y)) ∧ ((↓fst(x)) 
⇒ ((snd(x)) = (snd(y)) ∈ T)))
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
sym: Sym(T;x,y.E[x; y])
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
respects-equality: respects-equality(S;T)
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
squash_wf, 
uimplies_subtype, 
pi1_wf, 
pi2_wf, 
subtype-respects-equality, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation_alt, 
productElimination, 
thin, 
sqequalRule, 
hypothesis, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
lambdaEquality_alt, 
productIsType, 
universeEquality, 
isectIsType, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
equalitySymmetry, 
functionIsType, 
isectEquality, 
equalityIstype, 
isect_memberEquality_alt, 
inhabitedIsType, 
dependent_functionElimination, 
equalityTransitivity, 
independent_pairEquality, 
functionIsTypeImplies, 
axiomEquality
Latex:
\mforall{}[T:\mBbbU{}']
    EquivRel(ok:\mBbbP{}  \mtimes{}  T  supposing  \mdownarrow{}ok;x,y.(\mdownarrow{}fst(x)  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}fst(y))  \mwedge{}  ((\mdownarrow{}fst(x))  {}\mRightarrow{}  ((snd(x))  =  (snd(y)))))
Date html generated:
2020_05_20-AM-08_00_35
Last ObjectModification:
2020_05_17-PM-06_47_39
Theory : monads
Home
Index