Nuprl Lemma : provisional-equiv

[T:𝕌']. EquivRel(ok:ℙ × supposing ↓ok;x,y.(↓fst(x) ⇐⇒ ↓fst(y)) ∧ ((↓fst(x))  ((snd(x)) (snd(y)) ∈ T)))


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) uimplies: supposing a uall: [x:A]. B[x] prop: pi1: fst(t) pi2: snd(t) iff: ⇐⇒ Q squash: T implies:  Q and: P ∧ Q product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] pi1: fst(t) pi2: snd(t) cand: c∧ B iff: ⇐⇒ Q implies:  Q prop: rev_implies:  Q subtype_rel: A ⊆B uimplies: supposing a sym: Sym(T;x,y.E[x; y]) squash: T so_lambda: λ2x.t[x] so_apply: x[s] respects-equality: respects-equality(S;T) trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  squash_wf uimplies_subtype pi1_wf pi2_wf subtype-respects-equality istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation lambdaFormation_alt productElimination thin sqequalRule hypothesis universeIsType extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality because_Cache applyEquality instantiate cumulativity independent_isectElimination lambdaEquality_alt productIsType universeEquality isectIsType imageElimination imageMemberEquality baseClosed independent_functionElimination equalitySymmetry functionIsType isectEquality equalityIstype isect_memberEquality_alt inhabitedIsType dependent_functionElimination equalityTransitivity independent_pairEquality functionIsTypeImplies axiomEquality

Latex:
\mforall{}[T:\mBbbU{}']
    EquivRel(ok:\mBbbP{}  \mtimes{}  T  supposing  \mdownarrow{}ok;x,y.(\mdownarrow{}fst(x)  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}fst(y))  \mwedge{}  ((\mdownarrow{}fst(x))  {}\mRightarrow{}  ((snd(x))  =  (snd(y)))))



Date html generated: 2020_05_20-AM-08_00_35
Last ObjectModification: 2020_05_17-PM-06_47_39

Theory : monads


Home Index