Nuprl Lemma : term-opr_wf

[opr:Type]. ∀[t:term(opr)].  term-opr(t) ∈ opr supposing ¬↑isvarterm(t)


Proof




Definitions occuring in Statement :  term-opr: term-opr(t) isvarterm: isvarterm(t) term: term(opr) assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a guard: {T} subtype_rel: A ⊆B coterm-fun: coterm-fun(opr;T) isvarterm: isvarterm(t) isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt not: ¬A implies:  Q true: True false: False bfalse: ff term-opr: term-opr(t) outr: outr(x) pi1: fst(t)
Lemmas referenced :  term-ext ext-eq_inversion term_wf coterm-fun_wf subtype_rel_weakening istype-assert isvarterm_wf istype-void istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality promote_hyp hypothesis_subsumption hypothesis independent_isectElimination applyEquality because_Cache sqequalRule unionElimination independent_functionElimination natural_numberEquality voidElimination productElimination axiomEquality equalityTransitivity equalitySymmetry functionIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeIsType instantiate universeEquality

Latex:
\mforall{}[opr:Type].  \mforall{}[t:term(opr)].    term-opr(t)  \mmember{}  opr  supposing  \mneg{}\muparrow{}isvarterm(t)



Date html generated: 2020_05_19-PM-09_53_54
Last ObjectModification: 2020_03_09-PM-04_08_24

Theory : terms


Home Index