Nuprl Lemma : term-opr_wf
∀[opr:Type]. ∀[t:term(opr)].  term-opr(t) ∈ opr supposing ¬↑isvarterm(t)
Proof
Definitions occuring in Statement : 
term-opr: term-opr(t)
, 
isvarterm: isvarterm(t)
, 
term: term(opr)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
coterm-fun: coterm-fun(opr;T)
, 
isvarterm: isvarterm(t)
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
true: True
, 
false: False
, 
bfalse: ff
, 
term-opr: term-opr(t)
, 
outr: outr(x)
, 
pi1: fst(t)
Lemmas referenced : 
term-ext, 
ext-eq_inversion, 
term_wf, 
coterm-fun_wf, 
subtype_rel_weakening, 
istype-assert, 
isvarterm_wf, 
istype-void, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
promote_hyp, 
hypothesis_subsumption, 
hypothesis, 
independent_isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
unionElimination, 
independent_functionElimination, 
natural_numberEquality, 
voidElimination, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[opr:Type].  \mforall{}[t:term(opr)].    term-opr(t)  \mmember{}  opr  supposing  \mneg{}\muparrow{}isvarterm(t)
Date html generated:
2020_05_19-PM-09_53_54
Last ObjectModification:
2020_03_09-PM-04_08_24
Theory : terms
Home
Index