Nuprl Lemma : coterm-fun_wf

[opr,T:Type].  (coterm-fun(opr;T) ∈ Type)


Proof




Definitions occuring in Statement :  coterm-fun: coterm-fun(opr;T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T coterm-fun: coterm-fun(opr;T) prop:
Lemmas referenced :  varname_wf not_wf equal-wf-T-base list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule unionEquality setEquality extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality baseClosed productEquality axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies instantiate universeEquality

Latex:
\mforall{}[opr,T:Type].    (coterm-fun(opr;T)  \mmember{}  Type)



Date html generated: 2020_05_19-PM-09_53_24
Last ObjectModification: 2020_03_09-PM-04_08_05

Theory : terms


Home Index