Nuprl Lemma : coterm-fun_wf
∀[opr,T:Type].  (coterm-fun(opr;T) ∈ Type)
Proof
Definitions occuring in Statement : 
coterm-fun: coterm-fun(opr;T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
coterm-fun: coterm-fun(opr;T)
, 
prop: ℙ
Lemmas referenced : 
varname_wf, 
not_wf, 
equal-wf-T-base, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
unionEquality, 
setEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
baseClosed, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[opr,T:Type].    (coterm-fun(opr;T)  \mmember{}  Type)
Date html generated:
2020_05_19-PM-09_53_24
Last ObjectModification:
2020_03_09-PM-04_08_05
Theory : terms
Home
Index