Nuprl Lemma : term-ext
∀[opr:Type]. term(opr) ≡ coterm-fun(opr;term(opr))
Proof
Definitions occuring in Statement : 
term: term(opr)
, 
coterm-fun: coterm-fun(opr;T)
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
term: term(opr)
, 
guard: {T}
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
coterm-fun: coterm-fun(opr;T)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
not: ¬A
, 
false: False
, 
coterm-size: coterm-size(t)
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
has-value: (a)↓
, 
lsum: Σ(f[x] | x ∈ L)
, 
l_sum: l_sum(L)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
map: map(f;as)
, 
nil: []
, 
it: ⋅
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
cand: A c∧ B
, 
pi2: snd(t)
Lemmas referenced : 
coterm-ext, 
term_wf, 
coterm-fun_wf, 
istype-universe, 
subtype_rel_weakening, 
coterm_wf, 
ext-eq_inversion, 
list_wf, 
varname_wf, 
has-value_wf-partial, 
nat_wf, 
set-value-type, 
le_wf, 
istype-int, 
int-value-type, 
coterm-size_wf, 
nullvar_wf, 
istype-void, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-le, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
lsum_cons_lemma, 
istype-nat, 
nil_wf, 
istype-sqle, 
l_sum-wf-partial-nat, 
map_wf, 
partial_wf, 
pi2_wf, 
add-wf-partial-nat, 
nat-partial-nat, 
istype-false, 
add-has-value-iff, 
cons_wf, 
subtype_rel_list, 
subtype_rel_product, 
has-value_wf_base, 
is-exception_wf, 
map_cons_lemma, 
reduce_cons_lemma, 
add-swap, 
reduce_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
lambdaEquality_alt, 
universeIsType, 
hypothesis, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
instantiate, 
universeEquality, 
setElimination, 
rename, 
applyEquality, 
independent_isectElimination, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
unionElimination, 
inlEquality_alt, 
productIsType, 
productEquality, 
intEquality, 
natural_numberEquality, 
inrEquality_alt, 
setIsType, 
functionIsType, 
because_Cache, 
intWeakElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
voidElimination, 
functionIsTypeImplies, 
promote_hyp, 
hypothesis_subsumption, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalBase, 
divergentSqle, 
sqleReflexivity, 
axiomSqleEquality
Latex:
\mforall{}[opr:Type].  term(opr)  \mequiv{}  coterm-fun(opr;term(opr))
Date html generated:
2020_05_19-PM-09_53_35
Last ObjectModification:
2020_03_09-PM-04_08_11
Theory : terms
Home
Index