Nuprl Lemma : term-ext

[opr:Type]. term(opr) ≡ coterm-fun(opr;term(opr))


Proof




Definitions occuring in Statement :  term: term(opr) coterm-fun: coterm-fun(opr;T) ext-eq: A ≡ B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B term: term(opr) guard: {T} uimplies: supposing a all: x:A. B[x] implies:  Q coterm-fun: coterm-fun(opr;T) nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: not: ¬A false: False coterm-size: coterm-size(t) ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] or: P ∨ Q has-value: (a)↓ lsum: Σ(f[x] x ∈ L) l_sum: l_sum(L) reduce: reduce(f;k;as) list_ind: list_ind map: map(f;as) nil: [] it: cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) cand: c∧ B pi2: snd(t)
Lemmas referenced :  coterm-ext term_wf coterm-fun_wf istype-universe subtype_rel_weakening coterm_wf ext-eq_inversion list_wf varname_wf has-value_wf-partial nat_wf set-value-type le_wf istype-int int-value-type coterm-size_wf nullvar_wf istype-void nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases product_subtype_list colength-cons-not-zero colength_wf_list istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le lsum_cons_lemma istype-nat nil_wf istype-sqle l_sum-wf-partial-nat map_wf partial_wf pi2_wf add-wf-partial-nat nat-partial-nat istype-false add-has-value-iff cons_wf subtype_rel_list subtype_rel_product has-value_wf_base is-exception_wf map_cons_lemma reduce_cons_lemma add-swap reduce_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_pairFormation lambdaEquality_alt universeIsType hypothesis sqequalRule productElimination independent_pairEquality axiomEquality instantiate universeEquality setElimination rename applyEquality independent_isectElimination inhabitedIsType lambdaFormation_alt equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination unionElimination inlEquality_alt productIsType productEquality intEquality natural_numberEquality inrEquality_alt setIsType functionIsType because_Cache intWeakElimination approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  voidElimination functionIsTypeImplies promote_hyp hypothesis_subsumption dependent_set_memberEquality_alt applyLambdaEquality imageElimination baseApply closedConclusion baseClosed sqequalBase divergentSqle sqleReflexivity axiomSqleEquality

Latex:
\mforall{}[opr:Type].  term(opr)  \mequiv{}  coterm-fun(opr;term(opr))



Date html generated: 2020_05_19-PM-09_53_35
Last ObjectModification: 2020_03_09-PM-04_08_11

Theory : terms


Home Index