Nuprl Lemma : l_sum-wf-partial-nat

[L:partial(ℕList]. (l_sum(L) ∈ partial(ℕ))


Proof




Definitions occuring in Statement :  l_sum: l_sum(L) list: List partial: partial(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q l_sum: l_sum(L) le: A ≤ B less_than': less_than'(a;b) cons: [a b] decidable: Dec(P) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than partial_wf nat_wf list-cases reduce_nil_lemma nat-partial-nat istype-false istype-le product_subtype_list colength-cons-not-zero istype-nat colength_wf_list decidable__le intformnot_wf int_formula_prop_not_lemma list_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma le_wf reduce_cons_lemma add-wf-partial-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  unionElimination Error :dependent_set_memberEquality_alt,  promote_hyp hypothesis_subsumption productElimination Error :equalityIstype,  because_Cache instantiate applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase

Latex:
\mforall{}[L:partial(\mBbbN{})  List].  (l\_sum(L)  \mmember{}  partial(\mBbbN{}))



Date html generated: 2019_06_20-PM-01_43_36
Last ObjectModification: 2019_02_21-PM-03_28_30

Theory : list_1


Home Index