Nuprl Lemma : nat-partial-nat

[n:ℕ]. (n ∈ partial(ℕ))


Proof




Definitions occuring in Statement :  partial: partial(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  inclusion-partial nat_wf set-value-type le_wf int-value-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality applyEquality thin extract_by_obid sqequalHypSubstitution isectElimination hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  (n  \mmember{}  partial(\mBbbN{}))



Date html generated: 2018_05_21-PM-00_05_10
Last ObjectModification: 2017_10_18-PM-04_26_22

Theory : partial_1


Home Index