Nuprl Lemma : nat-partial-nat
∀[n:ℕ]. (n ∈ partial(ℕ))
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
inclusion-partial, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
applyEquality, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  (n  \mmember{}  partial(\mBbbN{}))
Date html generated:
2018_05_21-PM-00_05_10
Last ObjectModification:
2017_10_18-PM-04_26_22
Theory : partial_1
Home
Index