Nuprl Lemma : inclusion-partial

[T:Type]. T ⊆partial(T) supposing value-type(T)


Proof




Definitions occuring in Statement :  partial: partial(T) value-type: value-type(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x] implies:  Q base-partial: base-partial(T) and: P ∧ Q cand: c∧ B prop: not: ¬A false: False true: True so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] partial: partial(T) squash: T has-value: (a)↓ value-type: value-type(T) uiff: uiff(P;Q) per-partial: per-partial(T;x;y)
Lemmas referenced :  value-type_wf has-value_wf_base not_wf is-exception_wf istype-universe base_wf exception-not-value value-type-has-value member_wf squash_wf true_wf partial_wf quotient-member-eq per-partial-equiv_rel base-partial_wf per-partial_wf per-partial-reflex
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule axiomEquality hypothesis Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality Error :isect_memberEquality_alt,  because_Cache equalityTransitivity equalitySymmetry universeEquality Error :lambdaFormation_alt,  Error :dependent_set_memberEquality_alt,  independent_pairFormation Error :productIsType,  Error :isectIsType,  Error :equalityIsType4,  Error :inhabitedIsType,  independent_isectElimination independent_functionElimination voidElimination rename setElimination baseClosed imageMemberEquality natural_numberEquality dependent_functionElimination lemma_by_obid imageElimination applyEquality pointwiseFunctionality lambdaEquality axiomSqleEquality isect_memberFormation

Latex:
\mforall{}[T:Type].  T  \msubseteq{}r  partial(T)  supposing  value-type(T)



Date html generated: 2019_06_20-PM-00_33_45
Last ObjectModification: 2018_10_06-PM-03_52_04

Theory : partial_1


Home Index