Nuprl Lemma : add-wf-partial-nat

[x,y:partial(ℕ)].  (x y ∈ partial(ℕ))


Proof




Definitions occuring in Statement :  partial: partial(T) nat: uall: [x:A]. B[x] member: t ∈ T add: m
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q sq_stable: SqStable(P) squash: T prop: not: ¬A false: False subtype_rel: A ⊆B has-value: (a)↓
Lemmas referenced :  partial-base subtype_rel_partial nat_wf base_wf set_subtype_base le_wf istype-int int_subtype_base subtype_rel_transitivity partial_wf set-value-type int-value-type inclusion-partial add_nat_wf sq_stable__le is-exception_wf not_wf value-type-has-value has-value_wf_base apply-2-partial
Rules used in proof :  cut introduction extract_by_obid hypothesis sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin independent_isectElimination sqequalRule intEquality Error :lambdaEquality_alt,  natural_numberEquality hypothesisEquality because_Cache independent_pairFormation baseClosed Error :dependent_set_memberEquality_alt,  addEquality setElimination rename Error :inhabitedIsType,  Error :lambdaFormation_alt,  independent_functionElimination imageMemberEquality imageElimination Error :equalityIsType1,  equalityTransitivity equalitySymmetry dependent_functionElimination Error :universeIsType,  productElimination voidElimination baseApply closedConclusion applyEquality Error :productIsType,  callbyvalueAdd addExceptionCases

Latex:
\mforall{}[x,y:partial(\mBbbN{})].    (x  +  y  \mmember{}  partial(\mBbbN{}))



Date html generated: 2019_06_20-PM-00_34_19
Last ObjectModification: 2018_10_06-PM-05_12_59

Theory : partial_1


Home Index