Nuprl Lemma : add-wf-partial-nat
∀[x,y:partial(ℕ)].  (x + y ∈ partial(ℕ))
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
add: n + m
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
prop: ℙ
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
has-value: (a)↓
Lemmas referenced : 
partial-base, 
subtype_rel_partial, 
nat_wf, 
base_wf, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
subtype_rel_transitivity, 
partial_wf, 
set-value-type, 
int-value-type, 
inclusion-partial, 
add_nat_wf, 
sq_stable__le, 
is-exception_wf, 
not_wf, 
value-type-has-value, 
has-value_wf_base, 
apply-2-partial
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
hypothesisEquality, 
because_Cache, 
independent_pairFormation, 
baseClosed, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
independent_functionElimination, 
imageMemberEquality, 
imageElimination, 
Error :equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
Error :universeIsType, 
productElimination, 
voidElimination, 
baseApply, 
closedConclusion, 
applyEquality, 
Error :productIsType, 
callbyvalueAdd, 
addExceptionCases
Latex:
\mforall{}[x,y:partial(\mBbbN{})].    (x  +  y  \mmember{}  partial(\mBbbN{}))
Date html generated:
2019_06_20-PM-00_34_19
Last ObjectModification:
2018_10_06-PM-05_12_59
Theory : partial_1
Home
Index