Nuprl Lemma : add-has-value-iff

[x,y:partial(ℕ)].  uiff((x y)↓;(x)↓ ∧ (y)↓)


Proof




Definitions occuring in Statement :  partial: partial(T) nat: has-value: (a)↓ uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q add: m
Definitions unfolded in proof :  uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T has-value: (a)↓ subtype_rel: A ⊆B all: x:A. B[x] implies:  Q nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: guard: {T} cand: c∧ B
Lemmas referenced :  has-value_wf_base partial_subtype_base nat_wf set_subtype_base le_wf istype-int int_subtype_base has-value_wf-partial set-value-type int-value-type partial_wf add-has-value-partial-nat value-type-has-value termination
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  independent_pairFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomSqleEquality hypothesis Error :universeIsType,  extract_by_obid isectElimination baseApply closedConclusion baseClosed hypothesisEquality applyEquality dependent_functionElimination independent_functionElimination intEquality Error :lambdaEquality_alt,  natural_numberEquality independent_isectElimination Error :productIsType,  because_Cache Error :inhabitedIsType,  equalityTransitivity equalitySymmetry addEquality setElimination rename

Latex:
\mforall{}[x,y:partial(\mBbbN{})].    uiff((x  +  y)\mdownarrow{};(x)\mdownarrow{}  \mwedge{}  (y)\mdownarrow{})



Date html generated: 2019_06_20-PM-00_34_46
Last ObjectModification: 2019_02_21-PM-06_02_10

Theory : partial_1


Home Index