Nuprl Lemma : add-has-value-iff
∀[x,y:partial(ℕ)].  uiff((x + y)↓;(x)↓ ∧ (y)↓)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
nat: ℕ
, 
has-value: (a)↓
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
add: n + m
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
has-value: (a)↓
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
guard: {T}
, 
cand: A c∧ B
Lemmas referenced : 
has-value_wf_base, 
partial_subtype_base, 
nat_wf, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
has-value_wf-partial, 
set-value-type, 
int-value-type, 
partial_wf, 
add-has-value-partial-nat, 
value-type-has-value, 
termination
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
independent_pairFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomSqleEquality, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
dependent_functionElimination, 
independent_functionElimination, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
independent_isectElimination, 
Error :productIsType, 
because_Cache, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
setElimination, 
rename
Latex:
\mforall{}[x,y:partial(\mBbbN{})].    uiff((x  +  y)\mdownarrow{};(x)\mdownarrow{}  \mwedge{}  (y)\mdownarrow{})
Date html generated:
2019_06_20-PM-00_34_46
Last ObjectModification:
2019_02_21-PM-06_02_10
Theory : partial_1
Home
Index