Nuprl Lemma : partial_subtype_base
∀T:Type. ((T ⊆r Base) 
⇒ (partial(T) ⊆r Base))
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
subtype_partial_sqtype_base, 
subtype_rel_wf, 
base_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
Error :universeIsType, 
isectElimination, 
instantiate, 
universeEquality
Latex:
\mforall{}T:Type.  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  (partial(T)  \msubseteq{}r  Base))
Date html generated:
2019_06_20-PM-00_33_50
Last ObjectModification:
2018_10_18-PM-02_46_33
Theory : partial_1
Home
Index