Nuprl Lemma : partial_subtype_base

T:Type. ((T ⊆Base)  (partial(T) ⊆Base))


Proof




Definitions occuring in Statement :  partial: partial(T) subtype_rel: A ⊆B all: x:A. B[x] implies:  Q base: Base universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  subtype_partial_sqtype_base subtype_rel_wf base_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis Error :universeIsType,  isectElimination instantiate universeEquality

Latex:
\mforall{}T:Type.  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  (partial(T)  \msubseteq{}r  Base))



Date html generated: 2019_06_20-PM-00_33_50
Last ObjectModification: 2018_10_18-PM-02_46_33

Theory : partial_1


Home Index