Nuprl Lemma : add-has-value-partial-nat

[x,y:partial(ℕ)].  {(x ∈ ℤ) ∧ (y ∈ ℤ)} supposing (x y)↓


Proof




Definitions occuring in Statement :  partial: partial(T) nat: has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] guard: {T} and: P ∧ Q member: t ∈ T add: m int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q nat: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a guard: {T} and: P ∧ Q subtype_rel: A ⊆B prop: has-value: (a)↓
Lemmas referenced :  subtype_partial_sqtype_base nat_wf set_subtype_base le_wf istype-int int_subtype_base has-value_wf_base partial_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis independent_functionElimination sqequalRule isectElimination intEquality Error :lambdaEquality_alt,  natural_numberEquality hypothesisEquality independent_isectElimination Error :isect_memberFormation_alt,  productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  baseApply closedConclusion baseClosed applyEquality Error :isect_memberEquality_alt,  because_Cache Error :inhabitedIsType,  callbyvalueAdd independent_pairFormation

Latex:
\mforall{}[x,y:partial(\mBbbN{})].    \{(x  \mmember{}  \mBbbZ{})  \mwedge{}  (y  \mmember{}  \mBbbZ{})\}  supposing  (x  +  y)\mdownarrow{}



Date html generated: 2019_06_20-PM-00_34_44
Last ObjectModification: 2018_10_07-AM-00_23_36

Theory : partial_1


Home Index