Nuprl Lemma : add-has-value-partial-nat
∀[x,y:partial(ℕ)].  {(x ∈ ℤ) ∧ (y ∈ ℤ)} supposing (x + y)↓
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
nat: ℕ
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
and: P ∧ Q
, 
member: t ∈ T
, 
add: n + m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
guard: {T}
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
has-value: (a)↓
Lemmas referenced : 
subtype_partial_sqtype_base, 
nat_wf, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
has-value_wf_base, 
partial_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
isectElimination, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
hypothesisEquality, 
independent_isectElimination, 
Error :isect_memberFormation_alt, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
Error :isect_memberEquality_alt, 
because_Cache, 
Error :inhabitedIsType, 
callbyvalueAdd, 
independent_pairFormation
Latex:
\mforall{}[x,y:partial(\mBbbN{})].    \{(x  \mmember{}  \mBbbZ{})  \mwedge{}  (y  \mmember{}  \mBbbZ{})\}  supposing  (x  +  y)\mdownarrow{}
Date html generated:
2019_06_20-PM-00_34_44
Last ObjectModification:
2018_10_07-AM-00_23_36
Theory : partial_1
Home
Index