Nuprl Lemma : istype-sqle

[a,b:Base].  istype(a ≤ b)


Proof




Definitions occuring in Statement :  istype: istype(T) uall: [x:A]. B[x] base: Base sqle: s ≤ t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  sqle_wf_base base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :inhabitedIsType

Latex:
\mforall{}[a,b:Base].    istype(a  \mleq{}  b)



Date html generated: 2019_06_20-AM-11_20_33
Last ObjectModification: 2018_09_29-PM-11_07_20

Theory : call!by!value_1


Home Index