Nuprl Lemma : term_wf

[opr:Type]. (term(opr) ∈ Type)


Proof




Definitions occuring in Statement :  term: term(opr) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T term: term(opr) uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  coterm_wf has-value_wf-partial nat_wf set-value-type le_wf istype-int int-value-type coterm-size_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule setEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination intEquality lambdaEquality_alt natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry instantiate universeEquality

Latex:
\mforall{}[opr:Type].  (term(opr)  \mmember{}  Type)



Date html generated: 2020_05_19-PM-09_53_32
Last ObjectModification: 2020_03_09-PM-04_08_10

Theory : terms


Home Index