Nuprl Lemma : term_wf
∀[opr:Type]. (term(opr) ∈ Type)
Proof
Definitions occuring in Statement : 
term: term(opr)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
term: term(opr)
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
coterm_wf, 
has-value_wf-partial, 
nat_wf, 
set-value-type, 
le_wf, 
istype-int, 
int-value-type, 
coterm-size_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
intEquality, 
lambdaEquality_alt, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality
Latex:
\mforall{}[opr:Type].  (term(opr)  \mmember{}  Type)
Date html generated:
2020_05_19-PM-09_53_32
Last ObjectModification:
2020_03_09-PM-04_08_10
Theory : terms
Home
Index