Nuprl Lemma : coterm_wf
∀[opr:Type]. (coterm(opr) ∈ Type)
Proof
Definitions occuring in Statement : 
coterm: coterm(opr)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
coterm: coterm(opr)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
corec_wf, 
coterm-fun_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality_alt, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality
Latex:
\mforall{}[opr:Type].  (coterm(opr)  \mmember{}  Type)
Date html generated:
2020_05_19-PM-09_53_26
Last ObjectModification:
2020_03_09-PM-04_08_07
Theory : terms
Home
Index