Nuprl Lemma : coterm_wf

[opr:Type]. (coterm(opr) ∈ Type)


Proof




Definitions occuring in Statement :  coterm: coterm(opr) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T coterm: coterm(opr) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  corec_wf coterm-fun_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality_alt hypothesisEquality hypothesis inhabitedIsType axiomEquality equalityTransitivity equalitySymmetry instantiate universeEquality

Latex:
\mforall{}[opr:Type].  (coterm(opr)  \mmember{}  Type)



Date html generated: 2020_05_19-PM-09_53_26
Last ObjectModification: 2020_03_09-PM-04_08_07

Theory : terms


Home Index