Nuprl Lemma : coterm-size_wf

[opr:Type]. ∀[t:coterm(opr)].  (coterm-size(t) ∈ partial(ℕ))


Proof




Definitions occuring in Statement :  coterm-size: coterm-size(t) coterm: coterm(opr) partial: partial(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] coterm-fun: coterm-fun(opr;T) le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q coterm: coterm(opr) coterm-size: coterm-size(t) lsum: Σ(f[x] x ∈ L)
Lemmas referenced :  coterm_wf istype-universe fix_wf_corec-partial1 nat_wf set-value-type le_wf istype-int int-value-type nat-mono coterm-fun_wf coterm-fun-continous nat-partial-nat istype-false istype-le partial_wf add-wf-partial-nat l_sum-wf-partial-nat map_wf list_wf varname_wf pi2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution hypothesis universeIsType introduction extract_by_obid isectElimination thin hypothesisEquality instantiate universeEquality independent_isectElimination sqequalRule intEquality lambdaEquality_alt natural_numberEquality inhabitedIsType isect_memberEquality_alt unionElimination dependent_set_memberEquality_alt independent_pairFormation lambdaFormation_alt productElimination functionIsType productEquality applyEquality productIsType equalityTransitivity equalitySymmetry

Latex:
\mforall{}[opr:Type].  \mforall{}[t:coterm(opr)].    (coterm-size(t)  \mmember{}  partial(\mBbbN{}))



Date html generated: 2020_05_19-PM-09_53_30
Last ObjectModification: 2020_03_12-AM-11_14_33

Theory : terms


Home Index