Nuprl Lemma : coterm-size_wf
∀[opr:Type]. ∀[t:coterm(opr)].  (coterm-size(t) ∈ partial(ℕ))
Proof
Definitions occuring in Statement : 
coterm-size: coterm-size(t)
, 
coterm: coterm(opr)
, 
partial: partial(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
coterm-fun: coterm-fun(opr;T)
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
coterm: coterm(opr)
, 
coterm-size: coterm-size(t)
, 
lsum: Σ(f[x] | x ∈ L)
Lemmas referenced : 
coterm_wf, 
istype-universe, 
fix_wf_corec-partial1, 
nat_wf, 
set-value-type, 
le_wf, 
istype-int, 
int-value-type, 
nat-mono, 
coterm-fun_wf, 
coterm-fun-continous, 
nat-partial-nat, 
istype-false, 
istype-le, 
partial_wf, 
add-wf-partial-nat, 
l_sum-wf-partial-nat, 
map_wf, 
list_wf, 
varname_wf, 
pi2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
universeEquality, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality_alt, 
natural_numberEquality, 
inhabitedIsType, 
isect_memberEquality_alt, 
unionElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
lambdaFormation_alt, 
productElimination, 
functionIsType, 
productEquality, 
applyEquality, 
productIsType, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[opr:Type].  \mforall{}[t:coterm(opr)].    (coterm-size(t)  \mmember{}  partial(\mBbbN{}))
Date html generated:
2020_05_19-PM-09_53_30
Last ObjectModification:
2020_03_12-AM-11_14_33
Theory : terms
Home
Index