Nuprl Lemma : nat-mono

mono(ℕ)


Proof




Definitions occuring in Statement :  mono: mono(T) nat:
Definitions unfolded in proof :  nat: all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x] so_apply: x[s] implies:  Q
Lemmas referenced :  set-mono le_wf int-mono
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin intEquality sqequalRule lambdaEquality isectElimination natural_numberEquality hypothesisEquality hypothesis independent_functionElimination

Latex:
mono(\mBbbN{})



Date html generated: 2016_05_13-PM-04_13_40
Last ObjectModification: 2015_12_26-AM-11_10_23

Theory : subtype_1


Home Index