Nuprl Lemma : nat-mono
mono(ℕ)
Proof
Definitions occuring in Statement : 
mono: mono(T)
, 
nat: ℕ
Definitions unfolded in proof : 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
Lemmas referenced : 
set-mono, 
le_wf, 
int-mono
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
intEquality, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination
Latex:
mono(\mBbbN{})
Date html generated:
2016_05_13-PM-04_13_40
Last ObjectModification:
2015_12_26-AM-11_10_23
Theory : subtype_1
Home
Index