Nuprl Lemma : set-mono
∀A:Type. ∀P:A ⟶ ℙ.  (mono(A) 
⇒ mono({a:A| P[a]} ))
Proof
Definitions occuring in Statement : 
mono: mono(T)
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
subtype-mono, 
strong-subtype-set2, 
mono_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
lambdaEquality, 
sqequalRule, 
universeEquality, 
independent_isectElimination, 
functionEquality, 
cumulativity
Latex:
\mforall{}A:Type.  \mforall{}P:A  {}\mrightarrow{}  \mBbbP{}.    (mono(A)  {}\mRightarrow{}  mono(\{a:A|  P[a]\}  ))
Date html generated:
2016_05_13-PM-04_13_37
Last ObjectModification:
2015_12_26-AM-11_10_28
Theory : subtype_1
Home
Index