Nuprl Lemma : set-mono

A:Type. ∀P:A ⟶ ℙ.  (mono(A)  mono({a:A| P[a]} ))


Proof




Definitions occuring in Statement :  mono: mono(T) prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] subtype_rel: A ⊆B prop: uimplies: supposing a so_lambda: λ2x.t[x]
Lemmas referenced :  subtype-mono strong-subtype-set2 mono_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality applyEquality hypothesis lambdaEquality sqequalRule universeEquality independent_isectElimination functionEquality cumulativity

Latex:
\mforall{}A:Type.  \mforall{}P:A  {}\mrightarrow{}  \mBbbP{}.    (mono(A)  {}\mRightarrow{}  mono(\{a:A|  P[a]\}  ))



Date html generated: 2016_05_13-PM-04_13_37
Last ObjectModification: 2015_12_26-AM-11_10_28

Theory : subtype_1


Home Index