Nuprl Lemma : subtype-mono

[A,B:Type].  (mono(A)) supposing (mono(B) and strong-subtype(A;B))


Proof




Definitions occuring in Statement :  mono: mono(T) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a mono: mono(T) all: x:A. B[x] subtype_rel: A ⊆B strong-subtype: strong-subtype(A;B) cand: c∧ B implies:  Q guard: {T} label: ...$L... t prop:
Lemmas referenced :  strong-subtype-implies is-above_wf base_wf mono_wf strong-subtype_wf is-above-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation hypothesis dependent_functionElimination thin hypothesisEquality applyEquality productElimination sqequalRule independent_functionElimination lemma_by_obid isectElimination because_Cache equalitySymmetry lambdaEquality axiomEquality isect_memberEquality equalityTransitivity universeEquality independent_isectElimination

Latex:
\mforall{}[A,B:Type].    (mono(A))  supposing  (mono(B)  and  strong-subtype(A;B))



Date html generated: 2016_05_13-PM-04_13_35
Last ObjectModification: 2015_12_26-AM-11_11_12

Theory : subtype_1


Home Index