Nuprl Lemma : subtype-mono
∀[A,B:Type].  (mono(A)) supposing (mono(B) and strong-subtype(A;B))
Proof
Definitions occuring in Statement : 
mono: mono(T)
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
mono: mono(T)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
label: ...$L... t
, 
prop: ℙ
Lemmas referenced : 
strong-subtype-implies, 
is-above_wf, 
base_wf, 
mono_wf, 
strong-subtype_wf, 
is-above-subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
productElimination, 
sqequalRule, 
independent_functionElimination, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
equalitySymmetry, 
lambdaEquality, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[A,B:Type].    (mono(A))  supposing  (mono(B)  and  strong-subtype(A;B))
Date html generated:
2016_05_13-PM-04_13_35
Last ObjectModification:
2015_12_26-AM-11_11_12
Theory : subtype_1
Home
Index