Nuprl Lemma : is-above_wf
∀[T:Type]. ∀[a:T]. ∀[z:Base].  (is-above(T;a;z) ∈ ℙ)
Proof
Definitions occuring in Statement : 
is-above: is-above(T;a;z)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
is-above: is-above(T;a;z)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
base_wf, 
equal-wf-base-T, 
sqle_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
Error :lambdaEquality_alt, 
productEquality, 
because_Cache, 
hypothesisEquality, 
Error :inhabitedIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
Error :isect_memberEquality_alt, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[z:Base].    (is-above(T;a;z)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-00_28_11
Last ObjectModification:
2018_09_29-PM-11_15_19
Theory : subtype_1
Home
Index