Nuprl Lemma : is-above_wf

[T:Type]. ∀[a:T]. ∀[z:Base].  (is-above(T;a;z) ∈ ℙ)


Proof




Definitions occuring in Statement :  is-above: is-above(T;a;z) uall: [x:A]. B[x] prop: member: t ∈ T base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-above: is-above(T;a;z) so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s]
Lemmas referenced :  exists_wf base_wf equal-wf-base-T sqle_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis Error :lambdaEquality_alt,  productEquality because_Cache hypothesisEquality Error :inhabitedIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  Error :isect_memberEquality_alt,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[z:Base].    (is-above(T;a;z)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_28_11
Last ObjectModification: 2018_09_29-PM-11_15_19

Theory : subtype_1


Home Index