Nuprl Lemma : isvarterm_wf

[opr:Type]. ∀[t:term(opr)].  (isvarterm(t) ∈ 𝔹)


Proof




Definitions occuring in Statement :  isvarterm: isvarterm(t) term: term(opr) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a all: x:A. B[x] implies:  Q coterm-fun: coterm-fun(opr;T) isvarterm: isvarterm(t) isl: isl(x)
Lemmas referenced :  term-ext subtype_rel_weakening term_wf coterm-fun_wf btrue_wf bfalse_wf istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality independent_isectElimination sqequalRule inhabitedIsType lambdaFormation_alt unionElimination equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination universeIsType instantiate universeEquality

Latex:
\mforall{}[opr:Type].  \mforall{}[t:term(opr)].    (isvarterm(t)  \mmember{}  \mBbbB{})



Date html generated: 2020_05_19-PM-09_53_37
Last ObjectModification: 2020_03_09-PM-04_08_14

Theory : terms


Home Index