Nuprl Lemma : isvarterm_wf
∀[opr:Type]. ∀[t:term(opr)].  (isvarterm(t) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
isvarterm: isvarterm(t)
, 
term: term(opr)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
coterm-fun: coterm-fun(opr;T)
, 
isvarterm: isvarterm(t)
, 
isl: isl(x)
Lemmas referenced : 
term-ext, 
subtype_rel_weakening, 
term_wf, 
coterm-fun_wf, 
btrue_wf, 
bfalse_wf, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[opr:Type].  \mforall{}[t:term(opr)].    (isvarterm(t)  \mmember{}  \mBbbB{})
Date html generated:
2020_05_19-PM-09_53_37
Last ObjectModification:
2020_03_09-PM-04_08_14
Theory : terms
Home
Index