Nuprl Lemma : provisional-subtype

[T,S:𝕌'].  Provisional(T) ⊆Provisional(S) supposing T ⊆S


Proof




Definitions occuring in Statement :  provisional-type: Provisional(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B provisional-type: Provisional(T) quotient: x,y:A//B[x; y] and: P ∧ Q prop: so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_apply: x[s1;s2] all: x:A. B[x] guard: {T} cand: c∧ B squash: T pi1: fst(t) pi2: snd(t) respects-equality: respects-equality(S;T)
Lemmas referenced :  provisional-type_wf quotient-member-eq squash_wf iff_wf pi1_wf equal_wf pi2_wf uimplies_subtype provisional-equiv subtype_rel_transitivity equal_functionality_wrt_subtype_rel2 subtype-respects-equality subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin hypothesisEquality hypothesis sqequalRule pertypeElimination promote_hyp productElimination instantiate productEquality universeEquality isectEquality cumulativity universeIsType functionEquality applyEquality independent_functionElimination because_Cache independent_isectElimination inhabitedIsType productIsType isectIsType dependent_functionElimination equalityTransitivity equalitySymmetry dependent_pairEquality_alt isect_memberEquality_alt independent_pairFormation lambdaFormation_alt imageElimination imageMemberEquality baseClosed equalityIstype sqequalBase functionIsType hyp_replacement dependent_set_memberEquality_alt applyLambdaEquality setElimination rename axiomEquality isectIsTypeImplies

Latex:
\mforall{}[T,S:\mBbbU{}'].    Provisional(T)  \msubseteq{}r  Provisional(S)  supposing  T  \msubseteq{}r  S



Date html generated: 2020_05_20-AM-08_01_16
Last ObjectModification: 2020_05_17-PM-08_08_25

Theory : monads


Home Index