Nuprl Lemma : provisional-subtype
∀[T,S:𝕌'].  Provisional(T) ⊆r Provisional(S) supposing T ⊆r S
Proof
Definitions occuring in Statement : 
provisional-type: Provisional(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
provisional-type: Provisional(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
cand: A c∧ B
, 
squash: ↓T
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
respects-equality: respects-equality(S;T)
Lemmas referenced : 
provisional-type_wf, 
quotient-member-eq, 
squash_wf, 
iff_wf, 
pi1_wf, 
equal_wf, 
pi2_wf, 
uimplies_subtype, 
provisional-equiv, 
subtype_rel_transitivity, 
equal_functionality_wrt_subtype_rel2, 
subtype-respects-equality, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
productElimination, 
instantiate, 
productEquality, 
universeEquality, 
isectEquality, 
cumulativity, 
universeIsType, 
functionEquality, 
applyEquality, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
inhabitedIsType, 
productIsType, 
isectIsType, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairEquality_alt, 
isect_memberEquality_alt, 
independent_pairFormation, 
lambdaFormation_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
equalityIstype, 
sqequalBase, 
functionIsType, 
hyp_replacement, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
setElimination, 
rename, 
axiomEquality, 
isectIsTypeImplies
Latex:
\mforall{}[T,S:\mBbbU{}'].    Provisional(T)  \msubseteq{}r  Provisional(S)  supposing  T  \msubseteq{}r  S
Date html generated:
2020_05_20-AM-08_01_16
Last ObjectModification:
2020_05_17-PM-08_08_25
Theory : monads
Home
Index