Step
*
1
1
of Lemma
case-type-comp-false-true
1. Gamma : CubicalSet{j}
2. phi : {Gamma ⊢ _:𝔽}
3. psi : {Gamma ⊢ _:𝔽}
4. phi = 0(𝔽) ∈ {Gamma ⊢ _:𝔽}
5. Gamma ⊢ (1(𝔽)
⇒ psi)
6. B : {Gamma ⊢ _}
7. cB : Gamma ⊢ Compositon(B)
8. A : {Gamma, phi ⊢ _}
9. cA : Gamma, phi ⊢ Compositon(A)
⊢ case-type-comp(Gamma; phi; psi; A; B; cA; cB) ∈ Gamma, (phi ∨ psi) ⊢ Compositon((if phi then A else B))
BY
{ ((Assert Gamma, psi ⊢ B BY
(SubsumeC ⌜{Gamma ⊢ _}⌝⋅ THEN Auto))
THEN (Assert cB ∈ Gamma, psi ⊢ Compositon(B) BY
(SubsumeC ⌜Gamma ⊢ Compositon(B)⌝⋅ THEN Auto))
THEN (Assert Gamma ⊢ ((phi ∧ psi)
⇒ 0(𝔽)) BY
(RWO "4" 0 THEN Auto))
THEN (Assert Gamma, (phi ∧ psi) ⊢ A = B BY
(UnfoldTopAb 0
THEN SubsumeC ⌜{Gamma, 0(𝔽) ⊢ _}⌝⋅
THEN Try ((BLemma `empty-context-subset-lemma6` THEN Auto))
THEN (BLemma `subset-cubical-type` THENA Auto)
THEN BLemma `face-term-implies-subset`
THEN Auto))) }
1
1. Gamma : CubicalSet{j}
2. phi : {Gamma ⊢ _:𝔽}
3. psi : {Gamma ⊢ _:𝔽}
4. phi = 0(𝔽) ∈ {Gamma ⊢ _:𝔽}
5. Gamma ⊢ (1(𝔽)
⇒ psi)
6. B : {Gamma ⊢ _}
7. cB : Gamma ⊢ Compositon(B)
8. A : {Gamma, phi ⊢ _}
9. cA : Gamma, phi ⊢ Compositon(A)
10. Gamma, psi ⊢ B
11. cB ∈ Gamma, psi ⊢ Compositon(B)
12. Gamma ⊢ ((phi ∧ psi)
⇒ 0(𝔽))
13. Gamma, (phi ∧ psi) ⊢ A = B
⊢ case-type-comp(Gamma; phi; psi; A; B; cA; cB) ∈ Gamma, (phi ∨ psi) ⊢ Compositon((if phi then A else B))
Latex:
Latex:
1. Gamma : CubicalSet\{j\}
2. phi : \{Gamma \mvdash{} \_:\mBbbF{}\}
3. psi : \{Gamma \mvdash{} \_:\mBbbF{}\}
4. phi = 0(\mBbbF{})
5. Gamma \mvdash{} (1(\mBbbF{}) {}\mRightarrow{} psi)
6. B : \{Gamma \mvdash{} \_\}
7. cB : Gamma \mvdash{} Compositon(B)
8. A : \{Gamma, phi \mvdash{} \_\}
9. cA : Gamma, phi \mvdash{} Compositon(A)
\mvdash{} case-type-comp(Gamma; phi; psi; A; B; cA; cB)
\mmember{} Gamma, (phi \mvee{} psi) \mvdash{} Compositon((if phi then A else B))
By
Latex:
((Assert Gamma, psi \mvdash{} B BY
(SubsumeC \mkleeneopen{}\{Gamma \mvdash{} \_\}\mkleeneclose{}\mcdot{} THEN Auto))
THEN (Assert cB \mmember{} Gamma, psi \mvdash{} Compositon(B) BY
(SubsumeC \mkleeneopen{}Gamma \mvdash{} Compositon(B)\mkleeneclose{}\mcdot{} THEN Auto))
THEN (Assert Gamma \mvdash{} ((phi \mwedge{} psi) {}\mRightarrow{} 0(\mBbbF{})) BY
(RWO "4" 0 THEN Auto))
THEN (Assert Gamma, (phi \mwedge{} psi) \mvdash{} A = B BY
(UnfoldTopAb 0
THEN SubsumeC \mkleeneopen{}\{Gamma, 0(\mBbbF{}) \mvdash{} \_\}\mkleeneclose{}\mcdot{}
THEN Try ((BLemma `empty-context-subset-lemma6` THEN Auto))
THEN (BLemma `subset-cubical-type` THENA Auto)
THEN BLemma `face-term-implies-subset`
THEN Auto)))
Home
Index