Nuprl Lemma : cc-fst+-comp-0

[G:j⊢]. (p+ [0(𝕀)] [0(𝕀)] p ∈ G.𝕀 ij⟶ G.𝕀)


Proof




Definitions occuring in Statement :  interval-0: 0(𝕀) interval-type: 𝕀 csm+: tau+ csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] interval-0: 0(𝕀) csm-id-adjoin: [u] cc-fst: p interval-type: 𝕀 csm-comp: F csm+: tau+ csm-id: 1(X) csm-adjoin: (s;u) compose: g constant-cubical-type: (X) cc-snd: q csm-ap-type: (AF)s pi2: snd(t) csm-ap: (s)x pi1: fst(t) member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  csm-comp_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf cc-fst_wf csm-id-adjoin_wf-interval-0 cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis because_Cache universeIsType

Latex:
\mforall{}[G:j\mvdash{}].  (p+  o  [0(\mBbbI{})]  =  [0(\mBbbI{})]  o  p)



Date html generated: 2020_05_20-PM-04_43_21
Last ObjectModification: 2020_04_10-AM-11_24_52

Theory : cubical!type!theory


Home Index