Nuprl Lemma : cc-fst+-comp-1
∀[G:j⊢]. (p+ o [1(𝕀)] = [1(𝕀)] o p ∈ G.𝕀 ij⟶ G.𝕀)
Proof
Definitions occuring in Statement : 
interval-1: 1(𝕀)
, 
interval-type: 𝕀
, 
csm+: tau+
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-comp: G o F
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
interval-1: 1(𝕀)
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
interval-type: 𝕀
, 
csm-comp: G o F
, 
csm+: tau+
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
compose: f o g
, 
constant-cubical-type: (X)
, 
cc-snd: q
, 
csm-ap-type: (AF)s
, 
pi2: snd(t)
, 
csm-ap: (s)x
, 
pi1: fst(t)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
csm-comp_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
cc-fst_wf, 
csm-id-adjoin_wf-interval-1, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
universeIsType
Latex:
\mforall{}[G:j\mvdash{}].  (p+  o  [1(\mBbbI{})]  =  [1(\mBbbI{})]  o  p)
Date html generated:
2020_05_20-PM-04_43_50
Last ObjectModification:
2020_04_10-AM-11_25_52
Theory : cubical!type!theory
Home
Index