Nuprl Lemma : cc-snd-csm-adjoin-sq
∀[G,sigma,u:Top]. ((q)(sigma;u) ~ (u)1(G))
Proof
Definitions occuring in Statement :
csm-adjoin: (s;u)
,
cc-snd: q
,
csm-ap-term: (t)s
,
csm-id: 1(X)
,
uall: ∀[x:A]. B[x]
,
top: Top
,
sqequal: s ~ t
Definitions unfolded in proof :
csm-ap-term: (t)s
,
pscm-ap-term: (t)s
,
cc-snd: q
,
psc-snd: q
,
csm-ap: (s)x
,
pscm-ap: (s)x
,
csm-adjoin: (s;u)
,
pscm-adjoin: (s;u)
,
csm-id: 1(X)
,
pscm-id: 1(X)
Lemmas referenced :
psc-snd-pscm-adjoin-sq
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalRule,
sqequalReflexivity,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
hypothesis
Latex:
\mforall{}[G,sigma,u:Top]. ((q)(sigma;u) \msim{} (u)1(G))
Date html generated:
2018_05_23-AM-08_51_37
Last ObjectModification:
2018_05_20-PM-06_00_49
Theory : cubical!type!theory
Home
Index