Nuprl Lemma : cc-snd-csm-adjoin-sq
∀[G,sigma,u:Top].  ((q)(sigma;u) ~ (u)1(G))
Proof
Definitions occuring in Statement : 
csm-adjoin: (s;u)
, 
cc-snd: q
, 
csm-ap-term: (t)s
, 
csm-id: 1(X)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
csm-ap-term: (t)s
, 
pscm-ap-term: (t)s
, 
cc-snd: q
, 
psc-snd: q
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
csm-adjoin: (s;u)
, 
pscm-adjoin: (s;u)
, 
csm-id: 1(X)
, 
pscm-id: 1(X)
Lemmas referenced : 
psc-snd-pscm-adjoin-sq
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalRule, 
sqequalReflexivity, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[G,sigma,u:Top].    ((q)(sigma;u)  \msim{}  (u)1(G))
Date html generated:
2018_05_23-AM-08_51_37
Last ObjectModification:
2018_05_20-PM-06_00_49
Theory : cubical!type!theory
Home
Index