Nuprl Lemma : psc-snd-pscm-adjoin-sq
∀[G,sigma,u:Top].  ((q)(sigma;u) ~ (u)1(G))
Proof
Definitions occuring in Statement : 
pscm-adjoin: (s;u), 
psc-snd: q, 
pscm-ap-term: (t)s, 
pscm-id: 1(X), 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
pscm-id: 1(X), 
pscm-ap-term: (t)s, 
psc-snd: q, 
pscm-adjoin: (s;u), 
pscm-ap: (s)x, 
pi2: snd(t), 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[G,sigma,u:Top].    ((q)(sigma;u)  \msim{}  (u)1(G))
Date html generated:
2018_05_23-AM-08_13_37
Last ObjectModification:
2018_05_20-PM-09_52_46
Theory : presheaf!models!of!type!theory
Home
Index