Step
*
1
of Lemma
comp-fun-to-comp-op1_wf
.....subterm..... T:t
1:n
1. Gamma : CubicalSet{j}
2. A : {Gamma ⊢ _}
3. comp : composition-function{j:l,i:l}(Gamma;A)
4. I : fset(ℕ)
5. i : {i:ℕ| ¬i ∈ I}
6. rho : Gamma(I+i)
7. phi : 𝔽(I)
8. u : {I+i,s(phi) ⊢ _:(A)<rho> o iota}
9. a0 : cubical-path-0(Gamma;A;I;i;rho;phi;u)
⊢ comp formal-cube(I) <rho> o cube+(I;i) canonical-section(();𝔽;I;⋅;phi) (u)cube+(I;i)
canonical-section(Gamma;A;I;(i0)(rho);a0)
∈ {formal-cube(I) ⊢ _:((A)<rho> o cube+(I;i))[1(𝕀)][canonical-section(();𝔽;I;⋅;phi) |⟶ ((u)cube+(I;i))[1(𝕀)]]}
BY
{ (Assert formal-cube(I+i), canonical-section(Gamma;𝔽;I+i;rho;s(phi)) = I+i,s(phi) ∈ CubicalSet{j} BY
(RWO "context-subset-is-cubical-subset" 0
THEN Auto
THEN EqCD
THEN Auto
THEN RepUR ``canonical-section cubical-term-at`` 0
THEN (RWO "face-type-ap-morph" 0 THENA Auto)
THEN (RWO "fl-morph-id" 0 THENA Auto)
THEN Reduce 0
THEN Auto)) }
1
1. Gamma : CubicalSet{j}
2. A : {Gamma ⊢ _}
3. comp : composition-function{j:l,i:l}(Gamma;A)
4. I : fset(ℕ)
5. i : {i:ℕ| ¬i ∈ I}
6. rho : Gamma(I+i)
7. phi : 𝔽(I)
8. u : {I+i,s(phi) ⊢ _:(A)<rho> o iota}
9. a0 : cubical-path-0(Gamma;A;I;i;rho;phi;u)
10. formal-cube(I+i), canonical-section(Gamma;𝔽;I+i;rho;s(phi)) = I+i,s(phi) ∈ CubicalSet{j}
⊢ comp formal-cube(I) <rho> o cube+(I;i) canonical-section(();𝔽;I;⋅;phi) (u)cube+(I;i)
canonical-section(Gamma;A;I;(i0)(rho);a0)
∈ {formal-cube(I) ⊢ _:((A)<rho> o cube+(I;i))[1(𝕀)][canonical-section(();𝔽;I;⋅;phi) |⟶ ((u)cube+(I;i))[1(𝕀)]]}
Latex:
Latex:
.....subterm..... T:t
1:n
1. Gamma : CubicalSet\{j\}
2. A : \{Gamma \mvdash{} \_\}
3. comp : composition-function\{j:l,i:l\}(Gamma;A)
4. I : fset(\mBbbN{})
5. i : \{i:\mBbbN{}| \mneg{}i \mmember{} I\}
6. rho : Gamma(I+i)
7. phi : \mBbbF{}(I)
8. u : \{I+i,s(phi) \mvdash{} \_:(A)<rho> o iota\}
9. a0 : cubical-path-0(Gamma;A;I;i;rho;phi;u)
\mvdash{} comp formal-cube(I) <rho> o cube+(I;i) canonical-section(();\mBbbF{};I;\mcdot{};phi) (u)cube+(I;i)
canonical-section(Gamma;A;I;(i0)(rho);a0)
\mmember{} \{formal-cube(I) \mvdash{} \_:((A)<rho> o cube+(I;i))[1(\mBbbI{})][canonical-section(();\mBbbF{};I;\mcdot{};phi)
|{}\mrightarrow{} ((u)cube+(I;i))[1(\mBbbI{})]]\}
By
Latex:
(Assert formal-cube(I+i), canonical-section(Gamma;\mBbbF{};I+i;rho;s(phi)) = I+i,s(phi) BY
(RWO "context-subset-is-cubical-subset" 0
THEN Auto
THEN EqCD
THEN Auto
THEN RepUR ``canonical-section cubical-term-at`` 0
THEN (RWO "face-type-ap-morph" 0 THENA Auto)
THEN (RWO "fl-morph-id" 0 THENA Auto)
THEN Reduce 0
THEN Auto))
Home
Index