Nuprl Lemma : comp-fun-to-comp-op1_wf

Gamma:j⊢. ∀A:{Gamma ⊢ _}.
  ∀[comp:composition-function{j:l,i:l}(Gamma;A)]
    (comp-fun-to-comp-op1(Gamma;A;comp) ∈ I:fset(ℕ)
     ⟶ i:{i:ℕ| ¬i ∈ I} 
     ⟶ rho:Gamma(I+i)
     ⟶ phi:𝔽(I)
     ⟶ u:{I+i,s(phi) ⊢ _:(A)<rho> iota}
     ⟶ cubical-path-0(Gamma;A;I;i;rho;phi;u)
     ⟶ {formal-cube(I) ⊢ _:((A)<rho> cube+(I;i))[1(𝕀)][canonical-section(();𝔽;I;⋅;phi) |⟶ ((u)cube+(I;i))[1(𝕀)]]})


Proof




Definitions occuring in Statement :  comp-fun-to-comp-op1: comp-fun-to-comp-op1(Gamma;A;comp) composition-function: composition-function{j:l,i:l}(Gamma;A) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 cube+: cube+(I;i) interval-1: 1(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s canonical-section: canonical-section(Gamma;A;I;rho;a) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> trivial-cube-set: () formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-s: s add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: it: uall: [x:A]. B[x] all: x:A. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] comp-fun-to-comp-op1: comp-fun-to-comp-op1(Gamma;A;comp) member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q canonical-section: canonical-section(Gamma;A;I;rho;a) cubical-term-at: u(a) lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 composition-function: composition-function{j:l,i:l}(Gamma;A) unit: Unit trivial-cube-set: () cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X)
Lemmas referenced :  cubical-path-0_wf cubical-type-cumulativity2 cubical-term_wf cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf cubical_set_cumulativity-i-j cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf composition-function_wf cubical-type_wf cubical_set_wf equal_wf squash_wf true_wf istype-universe context-subset-is-cubical-subset canonical-section_wf face-type_wf subtype_rel_self iff_weakening_equal fl-morph-id face-type-ap-morph cube-context-adjoin_wf interval-type_wf cube+_wf trivial-cube-set_wf it_wf cubical-type-at_wf_face-type subset-cubical-term2 sub_cubical_set_self csm-face-type csm-ap-term-cube+ canonical-section-cubical-path-0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt lambdaEquality_alt universeIsType cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule setElimination rename independent_isectElimination dependent_functionElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination setIsType functionIsType intEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination

Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}A:\{Gamma  \mvdash{}  \_\}.
    \mforall{}[comp:composition-function\{j:l,i:l\}(Gamma;A)]
        (comp-fun-to-comp-op1(Gamma;A;comp)  \mmember{}  I:fset(\mBbbN{})
          {}\mrightarrow{}  i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\} 
          {}\mrightarrow{}  rho:Gamma(I+i)
          {}\mrightarrow{}  phi:\mBbbF{}(I)
          {}\mrightarrow{}  u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}
          {}\mrightarrow{}  cubical-path-0(Gamma;A;I;i;rho;phi;u)
          {}\mrightarrow{}  \{formal-cube(I)  \mvdash{}  \_:((A)<rho>  o  cube+(I;i))[1(\mBbbI{})][canonical-section(();\mBbbF{};I;\mcdot{};phi) 
                                                        |{}\mrightarrow{}  ((u)cube+(I;i))[1(\mBbbI{})]]\})



Date html generated: 2020_05_20-PM-04_29_35
Last ObjectModification: 2020_04_11-AM-10_02_26

Theory : cubical!type!theory


Home Index