Nuprl Lemma : fl-morph-id

I:fset(ℕ). (<1> x.x) ∈ (Point(face_lattice(I)) ⟶ Point(face_lattice(I))))


Proof




Definitions occuring in Statement :  fl-morph: <f> face_lattice: face_lattice(I) nh-id: 1 lattice-point: Point(l) fset: fset(T) nat: all: x:A. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T face_lattice: face_lattice(I) nh-id: 1 subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice cand: c∧ B lattice-0: 0 face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) empty-fset: {} nil: [] it: lattice-1: 1 fset-singleton: {x} cons: [a b] bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) fl-morph: <f> implies:  Q fl0: (x=0) true: True squash: T iff: ⇐⇒ Q rev_implies:  Q fl1: (x=1)
Lemmas referenced :  fl-lift-unique names_wf names-deq_wf face-lattice_wf face_lattice-deq_wf dM-to-FL_wf dm-neg_wf dM_inc_wf subtype_rel-equal lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf free-DeMorgan-lattice_wf face_lattice_wf dM-to-FL-neg2 lattice-0_wf bdd-distributive-lattice_wf lattice-1_wf bounded-lattice-hom_wf equal_functionality_wrt_subtype_rel2 fset_wf nat_wf fl0_wf squash_wf true_wf neg-dM_inc dM-to-FL-opp iff_weakening_equal fl1_wf dM-to-FL-inc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality because_Cache sqequalRule applyEquality instantiate productEquality independent_isectElimination cumulativity universeEquality dependent_functionElimination setElimination rename independent_pairFormation dependent_set_memberEquality productElimination isect_memberFormation independent_pairEquality axiomEquality isect_memberEquality functionExtensionality equalityTransitivity equalitySymmetry functionEquality independent_functionElimination natural_numberEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}I:fset(\mBbbN{}).  (ə>  =  (\mlambda{}x.x))



Date html generated: 2017_10_05-AM-01_13_19
Last ObjectModification: 2017_07_28-AM-09_30_52

Theory : cubical!type!theory


Home Index