Nuprl Lemma : fl-lift-unique
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))]. ∀[f0,f1:T ⟶ Point(L)].
∀g:Hom(face-lattice(T;eq);L)
fl-lift(T;eq;L;eqL;f0;f1) = g ∈ Hom(face-lattice(T;eq);L)
supposing ∀x:T. (((g (x=0)) = (f0 x) ∈ Point(L)) ∧ ((g (x=1)) = (f1 x) ∈ Point(L)))
supposing ∀x:T. (f0 x ∧ f1 x = 0 ∈ Point(L))
Proof
Definitions occuring in Statement :
fl-lift: fl-lift(T;eq;L;eqL;f0;f1)
,
face-lattice1: (x=1)
,
face-lattice0: (x=0)
,
face-lattice: face-lattice(T;eq)
,
bdd-distributive-lattice: BoundedDistributiveLattice
,
bounded-lattice-hom: Hom(l1;l2)
,
lattice-0: 0
,
lattice-meet: a ∧ b
,
lattice-point: Point(l)
,
deq: EqDecider(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
and: P ∧ Q
,
so_apply: x[s]
,
cand: A c∧ B
,
bdd-distributive-lattice: BoundedDistributiveLattice
,
bounded-lattice-hom: Hom(l1;l2)
,
lattice-hom: Hom(l1;l2)
,
implies: P
⇒ Q
,
true: True
,
squash: ↓T
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
face-lattice-hom-unique,
fl-lift_wf,
all_wf,
equal_wf,
face-lattice1_wf,
set_wf,
bounded-lattice-hom_wf,
face-lattice_wf,
face-lattice0_wf,
lattice-point_wf,
subtype_rel_set,
bounded-lattice-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
bounded-lattice-axioms_wf,
uall_wf,
lattice-meet_wf,
lattice-join_wf,
bdd-distributive-lattice_wf,
lattice-0_wf,
deq_wf,
iff_weakening_equal,
squash_wf,
true_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
isectElimination,
because_Cache,
functionExtensionality,
applyEquality,
independent_isectElimination,
hypothesis,
lambdaEquality,
setElimination,
rename,
setEquality,
sqequalRule,
productEquality,
cumulativity,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
independent_pairFormation,
instantiate,
universeEquality,
isect_memberEquality,
axiomEquality,
functionEquality,
natural_numberEquality,
imageElimination,
imageMemberEquality,
baseClosed,
productElimination
Latex:
\mforall{}[T:Type]. \mforall{}[eq:EqDecider(T)]. \mforall{}[L:BoundedDistributiveLattice]. \mforall{}[eqL:EqDecider(Point(L))].
\mforall{}[f0,f1:T {}\mrightarrow{} Point(L)].
\mforall{}g:Hom(face-lattice(T;eq);L)
fl-lift(T;eq;L;eqL;f0;f1) = g supposing \mforall{}x:T. (((g (x=0)) = (f0 x)) \mwedge{} ((g (x=1)) = (f1 x)))
supposing \mforall{}x:T. (f0 x \mwedge{} f1 x = 0)
Date html generated:
2017_10_05-AM-00_41_22
Last ObjectModification:
2017_07_28-AM-09_16_32
Theory : lattices
Home
Index