Nuprl Lemma : face-lattice-hom-unique

T:Type. ∀eq:EqDecider(T). ∀L:BoundedDistributiveLattice. ∀eqL:EqDecider(Point(L)). ∀f0,f1:T ⟶ Point(L).
  ∀[g,h:Hom(face-lattice(T;eq);L)].
    h ∈ Hom(face-lattice(T;eq);L) 
    supposing (∀x:T. (g (x=0) ∧ (x=1) 0 ∈ Point(L)))
    ∧ (∀x:T. ((g (x=0)) (h (x=0)) ∈ Point(L)))
    ∧ (∀x:T. ((g (x=1)) (h (x=1)) ∈ Point(L)))


Proof




Definitions occuring in Statement :  face-lattice1: (x=1) face-lattice0: (x=0) face-lattice: face-lattice(T;eq) bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-0: 0 lattice-meet: a ∧ b lattice-point: Point(l) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] guard: {T} implies:  Q face-lattice: face-lattice(T;eq) fl-deq: fl-deq(T;eq) bdd-lattice: BoundedLattice cand: c∧ B true: True squash: T iff: ⇐⇒ Q rev_implies:  Q compose: g
Lemmas referenced :  uall_wf lattice-point_wf face-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf lattice-0_wf lattice-1_wf all_wf face-lattice0_wf face-lattice1_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf deq_wf fl-point subtype_rel_weakening fset_wf assert_wf fset-antichain_wf union-deq_wf fset-member_wf deq-fset_wf not_wf set_wf ext-eq_inversion free-dlwc-basis face-lattice-constraints_wf bdd-distributive-lattice-subtype-bdd-lattice deq-implies fl-deq_wf lattice-hom-fset-join subtype_rel_transitivity bdd-lattice_wf fset-image_wf lattice-fset-meet_wf free-dlwc-inc_wf free-dist-lattice-with-constraints_wf lattice-fset-join_wf squash_wf decidable_wf decidable-equal-deq true_wf iff_weakening_equal fset-image-compose lattice-hom-fset-meet face-lattice0-is-inc face-lattice1-is-inc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin setElimination rename dependent_set_memberEquality hypothesis extract_by_obid isectElimination because_Cache hypothesisEquality applyEquality sqequalRule instantiate lambdaEquality productEquality cumulativity universeEquality independent_isectElimination functionExtensionality equalityTransitivity equalitySymmetry isect_memberEquality axiomEquality functionEquality setEquality unionEquality inlEquality inrEquality dependent_functionElimination independent_functionElimination hyp_replacement applyLambdaEquality independent_pairFormation natural_numberEquality imageElimination imageMemberEquality baseClosed unionElimination

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:BoundedDistributiveLattice.  \mforall{}eqL:EqDecider(Point(L)).
\mforall{}f0,f1:T  {}\mrightarrow{}  Point(L).
    \mforall{}[g,h:Hom(face-lattice(T;eq);L)].
        g  =  h 
        supposing  (\mforall{}x:T.  (g  (x=0)  \mwedge{}  g  (x=1)  =  0))
        \mwedge{}  (\mforall{}x:T.  ((g  (x=0))  =  (h  (x=0))))
        \mwedge{}  (\mforall{}x:T.  ((g  (x=1))  =  (h  (x=1))))



Date html generated: 2017_10_05-AM-00_41_14
Last ObjectModification: 2017_07_28-AM-09_16_25

Theory : lattices


Home Index